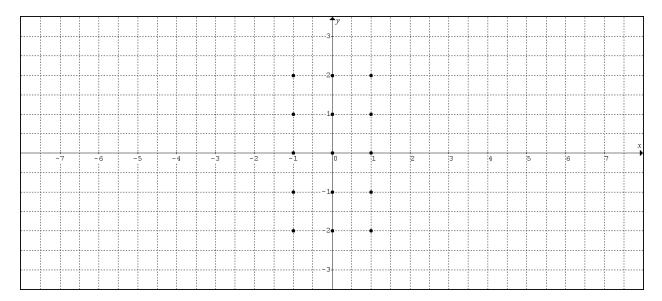
LINE INTEGRALS

VECTOR FIELD

WORK

GRAPH THE VECTOR FIELD $\mathbf{F}(x, y) = \langle x + y, x \rangle$ for the given 15 points shown below:



Orientation of a Non-Closed Line Integral

Orientation of a Closed Line Integral

IN CLASS PRACTICE: 16.2 #2, 4, 9, 15, 22

CONSERVATIVE VECTOR FIELD

DEFINITION:

Is F conservative? Methods to Determine:

1. Find f such that $\nabla f = \mathbf{F}$.

- A. "Magically" Pick *f*.
- B. Use "JAY'S METHOD" to find *f*.
- 2. Use a Theorem. **F** is conservative if ...

A.
$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$$
 in \Re^2

B. $curl\mathbf{F} = \mathbf{\vec{0}}$ in \Re^2 and in \Re^3

EXAMPLES: Determine if **F** is conservative.

FOUNDAMENTAL THEOREM OF CALCULUS FOR LINE INTEGRALS

EXAMPLE:

Find $\int_{C} \mathbf{F} \cdot d\mathbf{r}$ for $\mathbf{F} = \langle 2xz + y^2, 2xy, x^2 + 3z^2 \rangle$ and $C : x = t^2, y = t + 1, z = 2t - 1, 0 \le t \le 1$

IF AND ONLY IF ... THE 99.9%

IN CLASS PRACTICE: 16.3 # 1, 22, 12, 8, 20

ALL ABOUT DEL

Prove: If **F** is conservative, then $curl\mathbf{F} = \vec{\mathbf{0}}$

Prove: $div \ curl \mathbf{F} = 0$

GREEN'S THEOREM (R²)

EXAMPLES:

1. Evaluate $\oint_C 5xydx + x^3dy$ where *C* is the positively oriented closed curve consisting of $y = x^2$ and y = 2x between points (0, 0) and (2, 4).

2. Evaluate $\oint_C 2xydx + (x^2 + y^2)dy$ where *C* is the positively oriented ellipse $4x^2 + 9y^2 = 36$

3. Evaluate $\oint_C y^2 dx + 3xy dy$ where *C* is outline of the half circular washer with the positive orientation as shown in the graph below:

			[*]		
		\bigwedge			
-3	-2		0	4	3

EXPLAIN THIS ...

VECTOR FORM OF GREEN'S THEOREM

2 THEOREM Let *C* be a smooth curve given by the vector function $\mathbf{r}(t)$, $a \le t \le b$. Let *f* be a differentiable function of two or three variables whose gradient vector ∇f is continuous on *C*. Then

$$\int_{C} \nabla f \cdot d\mathbf{r} = f(\mathbf{r}(b)) - f(\mathbf{r}(a))$$

3 THEOREM $\int_C \mathbf{F} \cdot d\mathbf{r}$ is independent of path in *D* if and only if $\int_C \mathbf{F} \cdot d\mathbf{r} = 0$ for every closed path *C* in *D*.

4 THEOREM Suppose **F** is a vector field that is continuous on an open connected region *D*. If $\int_C \mathbf{F} \cdot d\mathbf{r}$ is independent of path in *D*, then **F** is a conservative vector field on *D*; that is, there exists a function *f* such that $\nabla f = \mathbf{F}$.

5 THEOREM If $\mathbf{F}(x, y) = P(x, y) \mathbf{i} + Q(x, y) \mathbf{j}$ is a conservative vector field, where *P* and *Q* have continuous first-order partial derivatives on a domain *D*, then throughout *D* we have

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$$

6 THEOREM Let $\mathbf{F} = P \mathbf{i} + Q \mathbf{j}$ be a vector field on an open simply-connected region *D*. Suppose that *P* and *Q* have continuous first-order derivatives and

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x} \qquad \text{throughout } D$$

Then **F** is conservative.

4 THEOREM If **F** is a vector field defined on all of \mathbb{R}^3 whose component functions have continuous partial derivatives and curl $\mathbf{F} = \mathbf{0}$, then **F** is a conservative vector field.

GREEN'S THEOREM Let C be a positively oriented, piecewise-smooth, simple closed curve in the plane and let D be the region bounded by C. If P and Q have continuous partial derivatives on an open region that contains D, then

$$\int_{C} P \, dx + Q \, dy = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA$$

Curve C is simple:

Curve C is closed:

Region R is open:

Region R is closed:

Region R is connected:

Region R is simply-connected:

1. Explain why you cannot use Green's Theorem to compute $\oint_{\mathbf{C}} \mathbf{F} \cdot d\mathbf{r}$ where $\mathbf{F} = y^{1/3}\mathbf{i} + x^{1/3}\mathbf{j}$ and C is the unit circle $x^2 + y^2 = 1$. How would you compute $\oint_{\mathbf{C}} \mathbf{F} \cdot d\mathbf{r}$?

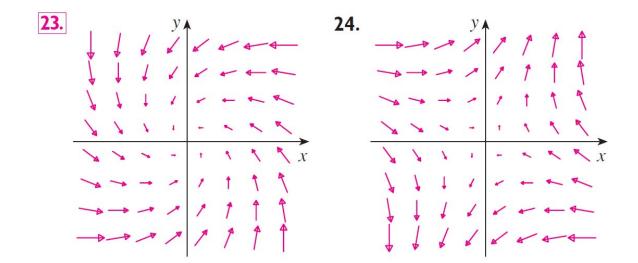
2. Explain why you cannot use Green's Theorem to compute $\oint_C \mathbf{F} \cdot d\mathbf{r}$ where $\mathbf{F} = \frac{1}{x^2 + y^2}\mathbf{i} + y\mathbf{j}$ and C is the unit circle $x^2 + y^2 = 1$. How would you compute $\oint_C \mathbf{F} \cdot d\mathbf{r}$?

3. Explain why $\oint_{C} \mathbf{F} \cdot d\mathbf{r} = 0$ for all closed curves in vector field $\mathbf{F} = 2y^{3/2}\mathbf{i} + 3x\sqrt{y}\mathbf{j}$ --- even though there are domain restrictions to **F**.

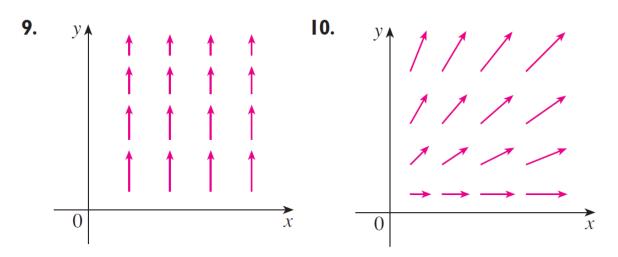
4. The Special Problem (The 0.01%)

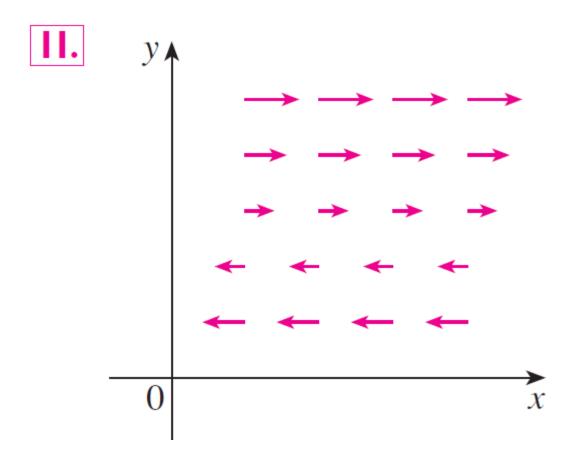
Consider the vector field $\mathbf{F} = \frac{-y}{x^2 + y^2} \mathbf{i} + \frac{x}{x^2 + y^2} \mathbf{j}$ (Special Problem)

- A. Compute $\oint_{C} \mathbf{F} \cdot d\mathbf{r}$ where C is the unit circle $x^2 + y^2 = 1$ that encloses the origin.
- B. Compute $\oint_{\mathbf{C}} \mathbf{F} \cdot d\mathbf{r}$ where C is any curve that does not enclose the origin.
- C. Prove that $\oint_{C} \mathbf{F} \cdot d\mathbf{r} = 2\pi$ for any curve C that encloses the origin.



16.5 DIVF: POS/NEG/ZERO CURLF · k: POS/NEG/ZERO





12. Let f be a scalar field and F a vector field. State whether each expression is meaningful. If not, explain why. If so, state whether it is a scalar field or a vector field.

(a) $\operatorname{curl} f$	(b) $\operatorname{grad} f$
(c) div F	(d) $\operatorname{curl}(\operatorname{grad} f)$
(e) grad F	(f) grad(div F)
(g) $\operatorname{div}(\operatorname{grad} f)$	(h) $grad(div f)$

- (i) $\operatorname{curl}(\operatorname{curl} \mathbf{F})$ (j) $\operatorname{div}(\operatorname{div} \mathbf{F})$

- (k) $(\operatorname{grad} f) \times (\operatorname{div} \mathbf{F})$ (l) $\operatorname{div}(\operatorname{curl}(\operatorname{grad} f))$

Video Sprinkles:

- € Why is an inverse square field called as such?
- € Show that an inverse square field is conservative.
- € Prove $\oint_C xdy ydx$ gives the area of region R enclosed by its boundary C.
- € Prove that the area of a circle with radius "a" is πa^2