C3.Q104.NOTES: 15A DOUBLE INTEGRALS

LESSON 1 (15.1 – 15.3)

WARM UP: Find the area of the region *R* bounded by $y = x^2$ and y = 2x

1. Describe some possible meanings of the double integral: $\iint_{R} f(x, y) dA$

2. Express
$$\iint_{R} f(x, y) dA$$
 as $\iint_{R} f(x, y) dy dx$ and $\iint_{R} f(x, y) dx dy$

3. Evaluate
$$\iint_{R} f(x, y) dA$$
 for $f(x, y) = 1$

4. Evaluate $\iint_{R} f(x, y) dA$ for $f(x, y) = x^{3} + 4y$

5. Express
$$\iint_{R} f(x, y) dA$$
 as $\iint_{R} f(x, y) dy dx$ and $\iint_{R} f(x, y) dx dy$ for

R = Region bounded by: $x = y^3$, x + y = 2, y = 0

6. Express
$$\iint_{R} f(x, y) dA$$
 as $\iint_{R} f(x, y) dy dx$ OR $\iint_{R} f(x, y) dx dy$

R = Region bounded by: $2y = 16 - x^2$, x + 2y = 4

7. Draw the region R in
$$\int_{1}^{3} \int_{\pi/6}^{y^2} f(x, y) dx dy$$
. Evaluate
$$\int_{1}^{3} \int_{\pi/6}^{y^2} f(x, y) dx dy$$
 for $f(x, y) = 2y \cos(x)$

8. Evaluate $\iint_{R} f(x, y) dA$ where R is the rectangular region $[1,4] \times [-1,2]$ and $f(x, y) = 2x + 6x^2 y$

LESSON 1 (15.1 – 15.3) HOMEWORK

Sketch the region bounded by the graphs of the given equations.

Express
$$\iint_{R} f(x, y) dA$$
 as $\iint_{R} f(x, y) dy dx$ and $\iint_{R} f(x, y) dx dy$
1. $y = \sqrt{x}$ $x = 4$ $y = 0$
2. $y = \sqrt{x}$ $x = 0$ $y = 2$
3. $y = \sqrt{x}$ $y = x^{3}$
4. $8y = x^{3}$ $y - x = 4$ $4x + y = 9$

5. Find the area bounded by y = x y = 3x x + y = 4

6. Find the volume of a lake whose surface is define by the region R in #5 and whose depth is defined by f(x, y) = x + y

7. Find the volume of the solid whose base is the region R bounded by $y^2 = -x$, x - y = 4, y = -1and y = 2 and whose height is f(x, y) = xy.

C3.Q104.NOTES: 15A DOUBLE INTEGRALS

LESSON 2 (15.1 – 15.3)

WORKSHOP: Section 15.3: #5, 7, 17, 21, 43, 45, 51, 55; Section 15.1 #1, 9; Section 15.2, #9,17

C3.Q104.NOTES: 15A DOUBLE INTEGRALS

LESSON 3 (15.4, 15.9)

1. (WARM UP) SET UP only the integral used to find the volume of the solid bounded by $z = 4 - x^2 - y^2$ and the *xy*-plane.

2. Find the volume of the solid described in #1 using a polar transformation.

3. Evaluate $\iint_{R_{xy}} e^{-(x^2+y^2)} dx dy$ for the region *R* bounded in the first quadrant by the circles $x^2 + y^2 = 1$ $x^2 + y^2 = 4$.

4. Show that the transformation $T: x = r \cos \theta$, $y = r \sin \theta$ always yields |J| = r.

5. Evaluate $\iint_{R_{xy}} e^{(y-x)/(y+x)} dx dy$ where R is the region within the trapezoid defined by the points (0,1)(0,2)(2,0)(1,0).