14.2 EXERCISES

- **I.** Suppose that $\lim_{(x,y)\to(3,1)} f(x, y) = 6$. What can you say about the value of f(3, 1)? What if *f* is continuous?
- Explain why each function is continuous or discontinuous.
 (a) The outdoor temperature as a function of longitude, latitude, and time
 - (b) Elevation (height above sea level) as a function of longitude, latitude, and time
 - (c) The cost of a taxi ride as a function of distance traveled and time

3–4 Use a table of numerical values of f(x, y) for (x, y) near the origin to make a conjecture about the value of the limit of f(x, y) as $(x, y) \rightarrow (0, 0)$. Then explain why your guess is correct.

3.
$$f(x, y) = \frac{x^2y^3 + x^3y^2 - 5}{2 - xy}$$
 4. $f(x, y) = \frac{2xy}{x^2 + 2y^2}$

5–22 Find the limit, if it exists, or show that the limit does not exist.

- 5. $\lim_{(x,y)\to(1,2)} (5x^3 x^2y^2)$ 6. $\lim_{(x,y)\to(1,-1)} e^{-xy}\cos(x+y)$ 8. $\lim_{(x,y)\to(1,0)} \ln\left(\frac{1+y^2}{x^2+xy}\right)$ 7. $\lim_{(x,y)\to(2,1)} \frac{4-xy}{x^2+3y^2}$ 9. $\lim_{(x, y) \to (0, 0)} \frac{y^4}{x^4 + 3y^4}$ 10. $\lim_{(x,y)\to(0,0)} \frac{x^2 + \sin^2 y}{2x^2 + y^2}$ 12. $\lim_{(x,y)\to(0,0)}\frac{6x^3y}{2x^4+y^4}$ 11. $\lim_{(x,y)\to(0,0)} \frac{xy\cos y}{3x^2 + y^2}$ 14. $\lim_{(x,y)\to(0,0)} \frac{x^4 - y^4}{x^2 + y^2}$ **13.** $\lim_{(x,y)\to(0,0)} \frac{xy}{\sqrt{x^2+y^2}}$ **15.** $\lim_{(x, y) \to (0, 0)} \frac{x^2 y e^y}{x^4 + 4y^2}$ 16. $\lim_{(x,y)\to(0,0)} \frac{x^2 \sin^2 y}{x^2 + 2y^2}$ **17.** $\lim_{(x,y)\to(0,0)} \frac{x^2 + y^2}{\sqrt{x^2 + y^2 + 1} - 1}$ **18.** $\lim_{(x,y)\to(0,0)} \frac{xy^4}{x^2 + y^8}$ **19.** $\lim_{(x, y, z) \to (3, 0, 1)} e^{-xy} \sin(\pi z/2)$ **20.** $\lim_{(x, y, z) \to (0, 0, 0)} \frac{x^2 + 2y^2 + 3z^2}{x^2 + y^2 + z^2}$ **21.** $\lim_{(x, y, z) \to (0, 0, 0)} \frac{xy + yz^2 + xz^2}{x^2 + y^2 + z^4}$ **22.** $\lim_{(x, y, z) \to (0, 0, 0)} \frac{yz}{x^2 + 4y^2 + 9z^2}$
- **23–24** Use a computer graph of the function to explain why the limit does not exist.

23.
$$\lim_{(x,y)\to(0,0)} \frac{2x^2 + 3xy + 4y^2}{3x^2 + 5y^2}$$

24.
$$\lim_{(x, y) \to (0, 0)} \frac{xy^3}{x^2 + y^6}$$

25–26 Find h(x, y) = g(f(x, y)) and the set on which *h* is continuous. **25.** $g(t) = t^2 + \sqrt{t}$, f(x, y) = 2x + 3y - 6

26.
$$g(t) = t + \ln t$$
, $f(x, y) = \frac{1 - xy}{1 + x^2y^2}$

Then use the formula to explain what you have observed.

27.
$$f(x, y) = e^{1/(x-y)}$$
 28. $f(x, y) = \frac{1}{1 - x^2 - y^2}$

29–38 Determine the set of points at which the function is continuous.

29.	$F(x, y) = \frac{\sin(xy)}{e^x - y^2}$	30. $F(x, y) = \frac{x - y}{1 + x^2 + y^2}$
31.	$F(x, y) = \arctan\left(x + \sqrt{y}\right)$	32. $F(x, y) = e^{x^2 y} + \sqrt{x + y^2}$
33.	$G(x, y) = \ln(x^2 + y^2 - 4)$	34. $G(x, y) = \tan^{-1}((x + y)^{-2})$
35.	$f(x, y, z) = \frac{\sqrt{y}}{x^2 - y^2 + z^2}$	
36.	$f(x, y, z) = \sqrt{x + y + z}$	
37.	$f(x, y) = \begin{cases} \frac{x^2 y^3}{2x^2 + y^2} & \text{if } (x, y) \\ 1 & \text{if } (x, y) \end{cases}$	$(x, y) \neq (0, 0)$ (x, y) = (0, 0)
38.	$f(x, y) = \begin{cases} \frac{xy}{x^2 + xy + y^2} \\ 0 \end{cases}$	if $(x, y) \neq (0, 0)$ if $(x, y) = (0, 0)$

39–41 Use polar coordinates to find the limit. [If (r, θ) are polar coordinates of the point (x, y) with $r \ge 0$, note that $r \to 0^+$ as $(x, y) \to (0, 0)$.]

39.
$$\lim_{(x, y) \to (0, 0)} \frac{x^3 + y^3}{x^2 + y^2}$$

40.
$$\lim_{(x, y) \to (0, 0)} (x^2 + y^2) \ln(x^2 + y^2)$$

41.
$$\lim_{(x, y) \to (0, 0)} \frac{e^{-x^2 - y^2} - 1}{x^2 + y^2}$$

878 CHAPTER 14 PARTIAL DERIVATIVES

42. At the beginning of this section we considered the function

$$f(x, y) = \frac{\sin(x^2 + y^2)}{x^2 + y^2}$$

and guessed that $f(x, y) \rightarrow 1$ as $(x, y) \rightarrow (0, 0)$ on the basis of numerical evidence. Use polar coordinates to confirm the value of the limit. Then graph the function.

43. Graph and discuss the continuity of the function

$$f(x, y) = \begin{cases} \frac{\sin xy}{xy} & \text{if } xy \neq 0\\ 1 & \text{if } xy = 0 \end{cases}$$

44. Let

$$f(x, y) = \begin{cases} 0 & \text{if } y \le 0 & \text{or } y \ge x^4 \\ 1 & \text{if } 0 < y < x^4 \end{cases}$$

(a) Show that f(x, y) → 0 as (x, y) → (0, 0) along any path through (0, 0) of the form y = mx^a with a < 4.</p>

- (b) Despite part (a), show that f is discontinuous at (0, 0).
- (c) Show that f is discontinuous on two entire curves.
- **45.** Show that the function f given by $f(\mathbf{x}) = |\mathbf{x}|$ is continuous on \mathbb{R}^n . [*Hint*: Consider $|\mathbf{x} \mathbf{a}|^2 = (\mathbf{x} \mathbf{a}) \cdot (\mathbf{x} \mathbf{a})$.]
- **46.** If $\mathbf{c} \in V_n$, show that the function f given by $f(\mathbf{x}) = \mathbf{c} \cdot \mathbf{x}$ is continuous on \mathbb{R}^n .

14.3 PARTIAL DERIVATIVES

On a hot day, extreme humidity makes us think the temperature is higher than it really is, whereas in very dry air we perceive the temperature to be lower than the thermometer indicates. The National Weather Service has devised the *heat index* (also called the temperature-humidity index, or humidex, in some countries) to describe the combined effects of temperature and humidity. The heat index *I* is the perceived air temperature when the actual temperature is *T* and the relative humidity is *H*. So *I* is a function of *T* and *H* and we can write I = f(T, H). The following table of values of *I* is an excerpt from a table compiled by the National Weather Service.

		Relative humidity (%)								
	H	50	55	60	65	70	75	80	85	90
	90	96	98	100	103	106	109	112	115	119
Actual	92	100	103	105	108	112	115	119	123	128
temperature	94	104	107	111	114	118	122	127	132	137
(°F)	96	109	113	116	121	125	130	135	141	146
	98	114	118	123	127	133	138	144	150	157
	100	119	124	129	135	141	147	154	161	168

 TABLE I

 Heat index I as a function of temperature and humidity

If we concentrate on the highlighted column of the table, which corresponds to a relative humidity of H = 70%, we are considering the heat index as a function of the single variable *T* for a fixed value of *H*. Let's write g(T) = f(T, 70). Then g(T) describes how the heat index *I* increases as the actual temperature *T* increases when the relative humidity is 70%. The derivative of *g* when $T = 96^{\circ}$ F is the rate of change of *I* with respect to *T* when $T = 96^{\circ}$ F:

$$g'(96) = \lim_{h \to 0} \frac{g(96+h) - g(96)}{h} = \lim_{h \to 0} \frac{f(96+h, 70) - f(96, 70)}{h}$$

We close this section by giving a proof of the first part of the Second Derivatives Test. Part (b) has a similar proof.

PROOF OF THEOREM 3, PART (A) We compute the second-order directional derivative of f in the direction of $\mathbf{u} = \langle h, k \rangle$. The first-order derivative is given by Theorem 14.6.3:

$$D_{\mathbf{u}}f = f_x h + f_y k$$

Applying this theorem a second time, we have

$$D_{\mathbf{u}}^{2}f = D_{\mathbf{u}}(D_{\mathbf{u}}f) = \frac{\partial}{\partial x} (D_{\mathbf{u}}f)h + \frac{\partial}{\partial y} (D_{\mathbf{u}}f)k$$
$$= (f_{xx}h + f_{yx}k)h + (f_{xy}h + f_{yy}k)k$$
$$= f_{xx}h^{2} + 2f_{xy}hk + f_{yy}k^{2}$$
(by Clairaut's Theorem)

If we complete the square in this expression, we obtain

$$D_{\mathbf{u}}^2 f = f_{xx} \left(h + \frac{f_{xy}}{f_{xx}} k \right)^2 + \frac{k^2}{f_{xx}} \left(f_{xx} f_{yy} - f_{xy}^2 \right)$$

We are given that $f_{xx}(a, b) > 0$ and D(a, b) > 0. But f_{xx} and $D = f_{xx}f_{yy} - f_{xy}^2$ are continuous functions, so there is a disk *B* with center (a, b) and radius $\delta > 0$ such that $f_{xx}(x, y) > 0$ and D(x, y) > 0 whenever (x, y) is in *B*. Therefore, by looking at Equation 10, we see that $D_u^2 f(x, y) > 0$ whenever (x, y) is in *B*. This means that if *C* is the curve obtained by intersecting the graph of *f* with the vertical plane through P(a, b, f(a, b)) in the direction of **u**, then *C* is concave upward on an interval of length 2δ . This is true in the direction of every vector **u**, so if we restrict (x, y) to lie in *B*, the graph of *f* lies above its horizontal tangent plane at *P*. Thus $f(x, y) \ge f(a, b)$ whenever (x, y) is in *B*. This shows that f(a, b) is a local minimum.

3 $f(x, y) = 4 + x^3 + y^3 - 3xy$

14.7 EXERCISES

I. Suppose (1, 1) is a critical point of a function *f* with continuous second derivatives. In each case, what can you say about *f*?

(a) $f_{xx}(1, 1) = 4$, $f_{xy}(1, 1) = 1$, $f_{yy}(1, 1) = 2$ (b) $f_{xx}(1, 1) = 4$, $f_{xy}(1, 1) = 3$, $f_{yy}(1, 1) = 2$

2. Suppose (0, 2) is a critical point of a function *g* with continuous second derivatives. In each case, what can you say about *q*?

(a) $g_{xx}(0, 2) = -1$, $g_{xy}(0, 2) = 6$, $g_{yy}(0, 2) = 1$ (b) $g_{xx}(0, 2) = -1$, $g_{xy}(0, 2) = 2$, $g_{yy}(0, 2) = -8$ (c) $g_{xx}(0, 2) = 4$, $g_{xy}(0, 2) = 6$, $g_{yy}(0, 2) = 9$

3–4 Use the level curves in the figure to predict the location of the critical points of f and whether f has a saddle point or a local maximum or minimum at each critical point. Explain your

reasoning. Then use the Second Derivatives Test to confirm your predictions.

4.
$$f(x, y) = 3x - x^3 - 2y^2 + y^4$$

5–18 Find the local maximum and minimum values and saddle point(s) of the function. If you have three-dimensional graphing software, graph the function with a domain and viewpoint that reveal all the important aspects of the function.

5.
$$f(x, y) = 9 - 2x + 4y - x^2 - 4y^2$$

6. $f(x, y) = x^3y + 12x^2 - 8y$
7. $f(x, y) = x^4 + y^4 - 4xy + 2$
8. $f(x, y) = e^{4y-x^2-y^2}$
9. $f(x, y) = (1 + xy)(x + y)$
10. $f(x, y) = 2x^3 + xy^2 + 5x^2 + y^2$
11. $f(x, y) = x^3 - 12xy + 8y^3$
12. $f(x, y) = xy + \frac{1}{x} + \frac{1}{y}$
13. $f(x, y) = e^x \cos y$
14. $f(x, y) = y \cos x$
15. $f(x, y) = (x^2 + y^2)e^{y^2-x^2}$
16. $f(x, y) = y^2 - 2y \cos x$, $1 \le x \le 7$
18. $f(x, y) = \sin x \sin y$, $-\pi < x < \pi$, $-\pi < y < \pi$

- 19. Show that $f(x, y) = x^2 + 4y^2 4xy + 2$ has an infinite number of critical points and that D = 0 at each one. Then show that *f* has a local (and absolute) minimum at each critical point.
- **20.** Show that $f(x, y) = x^2 y e^{-x^2 y^2}$ has maximum values at $(\pm 1, 1/\sqrt{2})$ and minimum values at $(\pm 1, -1/\sqrt{2})$. Show also that *f* has infinitely many other critical points and D = 0 at each of them. Which of them give rise to maximum values? Minimum values? Saddle points?
- 21-24 Use a graph and/or level curves to estimate the local maximum and minimum values and saddle point(s) of the function. Then use calculus to find these values precisely.

21.
$$f(x, y) = x^2 + y^2 + x^{-2}y^{-2}$$

SECTION 14.7 MAXIMUM AND MINIMUM VALUES 331

- **22.** $f(x, y) = x y e^{-x^2 y^2}$
- **23.** $f(x, y) = \sin x + \sin y + \sin(x + y),$ $0 \le x \le 2\pi, \ 0 \le y \le 2\pi$
- **24.** $f(x, y) = \sin x + \sin y + \cos(x + y),$ $0 \le x \le \pi/4, \ 0 \le y \le \pi/4$
- **25–28** Use a graphing device as in Example 4 (or Newton's method or a rootfinder) to find the critical points of f correct to three decimal places. Then classify the critical points and find the highest or lowest points on the graph.

25.
$$f(x, y) = x^4 - 5x^2 + y^2 + 3x + 2$$

26.
$$f(x, y) = 5 - 10xy - 4x^2 + 3y - y^4$$

27. $f(x, y) = 2x + 4x^2 - y^2 + 2xy^2 - x^4 - y^4$

28. $f(x, y) = e^x + y^4 - x^3 + 4\cos y$

29–36 Find the absolute maximum and minimum values of f on the set D.

- **29.** f(x, y) = 1 + 4x 5y, *D* is the closed triangular region with vertices (0, 0), (2, 0), and (0, 3)
- **30.** f(x, y) = 3 + xy x 2y, *D* is the closed triangular region with vertices (1, 0), (5, 0), and (1, 4)

31.
$$f(x, y) = x^2 + y^2 + x^2y + 4$$
,
 $D = \{(x, y) \mid |x| \le 1, |y| \le 1\}$

- **32.** $f(x, y) = 4x + 6y x^2 y^2$, $D = \{(x, y) \mid 0 \le x \le 4, 0 \le y \le 5\}$
- **33.** $f(x, y) = x^4 + y^4 4xy + 2,$ $D = \{(x, y) \mid 0 \le x \le 3, 0 \le y \le 2\}$
- **34.** $f(x, y) = xy^2$, $D = \{(x, y) \mid x \ge 0, y \ge 0, x^2 + y^2 \le 3\}$
- **35.** $f(x, y) = 2x^3 + y^4$, $D = \{(x, y) \mid x^2 + y^2 \le 1\}$
- **36.** $f(x, y) = x^3 3x y^3 + 12y$, *D* is the quadrilateral whose vertices are (-2, 3), (2, 3), (2, 2), and (-2, -2).
- For functions of one variable it is impossible for a continuous function to have two local maxima and no local minimum. But for functions of two variables such functions exist. Show that the function

$$f(x, y) = -(x^2 - 1)^2 - (x^2y - x - 1)^2$$

has only two critical points, but has local maxima at both of them. Then use a computer to produce a graph with a carefully chosen domain and viewpoint to see how this is possible.

38. If a function of one variable is continuous on an interval and has only one critical number, then a local maximum has to be

932 CHAPTER 14 PARTIAL DERIVATIVES

an absolute maximum. But this is not true for functions of two variables. Show that the function

$$f(x, y) = 3xe^{y} - x^{3} - e^{3y}$$

has exactly one critical point, and that f has a local maximum there that is not an absolute maximum. Then use a computer to produce a graph with a carefully chosen domain and viewpoint to see how this is possible.

- **39.** Find the shortest distance from the point (2, 1, -1) to the plane x + y z = 1.
- 40. Find the point on the plane x y + z = 4 that is closest to the point (1, 2, 3).
- **41.** Find the points on the cone $z^2 = x^2 + y^2$ that are closest to the point (4, 2, 0).
- **42.** Find the points on the surface $y^2 = 9 + xz$ that are closest to the origin.
- **43.** Find three positive numbers whose sum is 100 and whose product is a maximum.
- **44.** Find three positive numbers whose sum is 12 and the sum of whose squares is as small as possible.
- **45.** Find the maximum volume of a rectangular box that is inscribed in a sphere of radius *r*.
- **46.** Find the dimensions of the box with volume 1000 cm³ that has minimal surface area.
- **47.** Find the volume of the largest rectangular box in the first octant with three faces in the coordinate planes and one vertex in the plane x + 2y + 3z = 6.
- **48.** Find the dimensions of the rectangular box with largest volume if the total surface area is given as 64 cm².
- **49.** Find the dimensions of a rectangular box of maximum volume such that the sum of the lengths of its 12 edges is a constant *c*.
- **50.** The base of an aquarium with given volume *V* is made of slate and the sides are made of glass. If slate costs five times as much (per unit area) as glass, find the dimensions of the aquarium that minimize the cost of the materials.
- **51.** A cardboard box without a lid is to have a volume of 32,000 cm³. Find the dimensions that minimize the amount of cardboard used.
- **52.** A rectangular building is being designed to minimize heat loss. The east and west walls lose heat at a rate of 10 units/m^2 per day, the north and south walls at a rate of 8 units/m² per day, the floor at a rate of 1 unit/m² per day, and the roof at a rate of 5 units/m² per day. Each wall must be at least 30 m long, the height must be at least 4 m, and the volume must be exactly 4000 m³.
 - (a) Find and sketch the domain of the heat loss as a function of the lengths of the sides.

- (b) Find the dimensions that minimize heat loss. (Check both the critical points and the points on the boundary of the domain.)
- (c) Could you design a building with even less heat loss if the restrictions on the lengths of the walls were removed?
- **53.** If the length of the diagonal of a rectangular box must be *L*, what is the largest possible volume?
- 54. Three alleles (alternative versions of a gene) A, B, and O determine the four blood types A (AA or AO), B (BB or BO), O (OO), and AB. The Hardy-Weinberg Law states that the proportion of individuals in a population who carry two different alleles is

$$P = 2pq + 2pr + 2rq$$

where *p*, *q*, and *r* are the proportions of A, B, and O in the population. Use the fact that p + q + r = 1 to show that *P* is at most $\frac{2}{3}$.

55. Suppose that a scientist has reason to believe that two quantities *x* and *y* are related linearly, that is, y = mx + b, at least approximately, for some values of *m* and *b*. The scientist performs an experiment and collects data in the form of points $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$, and then plots these points. The points don't lie exactly on a straight line, so the scientist wants to find constants *m* and *b* so that the line y = mx + b "fits" the points as well as possible. (See the figure.)

Let $d_i = y_i - (mx_i + b)$ be the vertical deviation of the point (x_i, y_i) from the line. The **method of least squares** determines *m* and *b* so as to minimize $\sum_{i=1}^{n} d_i^2$, the sum of the squares of these deviations. Show that, according to this method, the line of best fit is obtained when

$$m\sum_{i=1}^{n} x_i + bn = \sum_{i=1}^{n} y_i$$
$$n\sum_{i=1}^{n} x_i^2 + b\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} x_i y_i$$

Thus the line is found by solving these two equations in the two unknowns m and b. (See Section 1.2 for a further discussion and applications of the method of least squares.)

56. Find an equation of the plane that passes through the point (1, 2, 3) and cuts off the smallest volume in the first octant.

n

14.8 EXERCISES

I. Pictured are a contour map of f and a curve with equation g(x, y) = 8. Estimate the maximum and minimum values of f subject to the constraint that g(x, y) = 8. Explain your reasoning.

- A (a) Use a graphing calculator or computer to graph the circle x² + y² = 1. On the same screen, graph several curves of the form x² + y = c until you find two that just touch the circle. What is the significance of the values of c for these two curves?
 - (b) Use Lagrange multipliers to find the extreme values of f(x, y) = x² + y subject to the constraint x² + y² = 1. Compare your answers with those in part (a).
 - **3–17** Use Lagrange multipliers to find the maximum and minimum values of the function subject to the given constraint(s).
 - **3.** $f(x, y) = x^2 + y^2; xy = 1$
 - **4.** $f(x, y) = 4x + 6y; \quad x^2 + y^2 = 13$
 - 5. $f(x, y) = x^2 y; \quad x^2 + 2y^2 = 6$
 - **6.** $f(x, y) = e^{xy}; \quad x^3 + y^3 = 16$
 - **7.** $f(x, y, z) = 2x + 6y + 10z; \quad x^2 + y^2 + z^2 = 35$
 - **8.** $f(x, y, z) = 8x 4z; x^2 + 10y^2 + z^2 = 5$
 - **9.** $f(x, y, z) = xyz; \quad x^2 + 2y^2 + 3z^2 = 6$
 - **10.** $f(x, y, z) = x^2 y^2 z^2; \quad x^2 + y^2 + z^2 = 1$
 - $II. f(x, y, z) = x^2 + y^2 + z^2; \quad x^4 + y^4 + z^4 = 1$
 - **12.** $f(x, y, z) = x^4 + y^4 + z^4; \quad x^2 + y^2 + z^2 = 1$
 - **13.** $f(x, y, z, t) = x + y + z + t; \quad x^2 + y^2 + z^2 + t^2 = 1$
 - **14.** $f(x_1, x_2, \dots, x_n) = x_1 + x_2 + \dots + x_n;$ $x_1^2 + x_2^2 + \dots + x_n^2 = 1$

15.
$$f(x, y, z) = x + 2y; \quad x + y + z = 1, \quad y^2 + z^2 = 4$$

16. $f(x, y, z) = 3x - y - 3z; \quad x + y - z = 0, \quad x^2 + 2z^2 = 1$
17. $f(x, y, z) = yz + xy; \quad xy = 1, \quad y^2 + z^2 = 1$

18–19 Find the extreme values of f on the region described by the inequality.

18.
$$f(x, y) = 2x^2 + 3y^2 - 4x - 5$$
, $x^2 + y^2 \le 16$

19. $f(x, y) = e^{-xy}, \quad x^2 + 4y^2 \le 1$

Æ

- **20.** Consider the problem of maximizing the function $f(x) = 2 \frac{1}{2} \frac{1}{2}$
 - f(x, y) = 2x + 3y subject to the constraint $\sqrt{x} + \sqrt{y} = 5$. (a) Try using Lagrange multipliers to solve the problem.
 - (a) Try using Lagrange multipliers to solve the problem.
 - (b) Does f(25, 0) give a larger value than the one in part (a)?
 - (c) Solve the problem by graphing the constraint equation and several level curves of *f*.
 - (d) Explain why the method of Lagrange multipliers fails to solve the problem.
 - (e) What is the significance of f(9, 4)?
- **21.** Consider the problem of minimizing the function f(x, y) = x on the curve $y^2 + x^4 x^3 = 0$ (a piriform).
 - (a) Try using Lagrange multipliers to solve the problem.
 - (b) Show that the minimum value is f(0, 0) = 0 but the Lagrange condition ∇f(0, 0) = λ∇g(0, 0) is not satisfied for any value of λ.
 - (c) Explain why Lagrange multipliers fail to find the minimum value in this case.
- (45) 22. (a) If your computer algebra system plots implicitly defined curves, use it to estimate the minimum and maximum values of $f(x, y) = x^3 + y^3 + 3xy$ subject to the constraint $(x 3)^2 + (y 3)^2 = 9$ by graphical methods.
 - (b) Solve the problem in part (a) with the aid of Lagrange multipliers. Use your CAS to solve the equations numerically. Compare your answers with those in part (a).
 - **23.** The total production *P* of a certain product depends on the amount *L* of labor used and the amount *K* of capital investment. In Sections 14.1 and 14.3 we discussed how the Cobb-Douglas model $P = bL^{\alpha}K^{1-\alpha}$ follows from certain economic assumptions, where *b* and α are positive constants and $\alpha < 1$. If the cost of a unit of labor is *m* and the cost of a unit of capital is *n*, and the company can spend only *p* dollars as its total budget, then maximizing the production *P* is subject to the constraint mL + nK = p. Show that the maximum production occurs when

$$L = \frac{\alpha p}{m}$$
 and $K = \frac{(1 - \alpha)p}{n}$

APPLIED PROJECT ROCKET SCIENCE 941

- 24. Referring to Exercise 23, we now suppose that the production is fixed at $bL^{\alpha}K^{1-\alpha} = Q$, where Q is a constant. What values of L and K minimize the cost function C(L, K) = mL + nK?
- **25.** Use Lagrange multipliers to prove that the rectangle with maximum area that has a given perimeter p is a square.
- **26.** Use Lagrange multipliers to prove that the triangle with maximum area that has a given perimeter *p* is equilateral. Hint: Use Heron's formula for the area:

 $A = \sqrt{s(s-x)(s-y)(s-z)}$

where s = p/2 and x, y, z are the lengths of the sides.

27–39 Use Lagrange multipliers to give an alternate solution to the indicated exercise in Section 14.7.

27. Exercise 39	28. Exercise 40
29. Exercise 41	30. Exercise 42
31. Exercise 43	32. Exercise 44
33. Exercise 45	34. Exercise 46
35. Exercise 47	36. Exercise 48
37. Exercise 49	38. Exercise 50
39. Exercise 53	

- 40. Find the maximum and minimum volumes of a rectangular box whose surface area is 1500 cm² and whose total edge length is 200 cm.
- **41.** The plane x + y + 2z = 2 intersects the paraboloid $z = x^2 + y^2$ in an ellipse. Find the points on this ellipse that are nearest to and farthest from the origin.
- **42.** The plane 4x 3y + 8z = 5 intersects the cone $z^2 = x^2 + y^2$ in an ellipse. Æ
 - (a) Graph the cone, the plane, and the ellipse.
 - (b) Use Lagrange multipliers to find the highest and lowest points on the ellipse.

(45 + 43 - 44) Find the maximum and minimum values of f subject to the given constraints. Use a computer algebra system to solve the system of equations that arises in using Lagrange multipliers. (If your CAS finds only one solution, you may need to use additional commands.)

43.
$$f(x, y, z) = ye^{x-z}$$
; $9x^2 + 4y^2 + 36z^2 = 36$, $xy + yz = 1$
44. $f(x, y, z) = x + y + z$; $x^2 - y^2 = z$, $x^2 + z^2 = 4$

45. (a) Find the maximum value of

$$f(x_1, x_2, \ldots, x_n) = \sqrt[n]{x_1 x_2 \cdots x_n}$$

given that x_1, x_2, \ldots, x_n are positive numbers and $x_1 + x_2 + \cdots + x_n = c$, where *c* is a constant.

(b) Deduce from part (a) that if x_1, x_2, \ldots, x_n are positive numbers, then

$$\sqrt[n]{x_1x_2\cdots x_n} \leqslant \frac{x_1+x_2+\cdots+x_n}{n}$$

This inequality says that the geometric mean of nnumbers is no larger than the arithmetic mean of the numbers. Under what circumstances are these two means equal?

46. (a) Maximize $\sum_{i=1}^{n} x_i y_i$ subject to the constraints $\sum_{i=1}^{n} x_i^2 = 1$ and $\sum_{i=1}^{n} y_i^2 = 1$.

(b) Put

$$x_i = \frac{a_i}{\sqrt{\sum a_i^2}}$$
 and $y_i = \frac{b_i}{\sqrt{\sum b_i^2}}$

to show that

$$\sum a_i b_i \leqslant \sqrt{\Sigma a_j^2} \sqrt{\Sigma b_j^2}$$

for any numbers $a_1, \ldots, a_n, b_1, \ldots, b_n$. This inequality is known as the Cauchy-Schwarz Inequality.

APPLIED	ROCKET SCIENCE
PROJECT	Many rockets, such as the Pegasus XL currently used to launch satellites and the Saturn V that first put men on the moon, are designed to use three stages in their ascent into space. A large first stage initially propels the rocket until its fuel is consumed, at which point the stage is jettisoned to reduce the mass of the rocket. The smaller second and third stages function similarly in order to place the rocket's payload into orbit about the earth. (With this design, at least two stages are required in order to reach the necessary velocities, and using three stages has proven to be a good compromise between cost and performance.) Our goal here is to determine the individual masses of the three stages, which are to be designed in such a way as to minimize the total mass of the rocket while enabling it to reach a desired velocity.