Notice also that the gradient vectors are long where the level curves are close to each other and short where the curves are farther apart. That's because the length of the gradient vector is the value of the directional derivative of f and closely spaced level curves indicate a steep graph. 

A vector field F is called a conservative vector field if it is the gradient of some scalar function, that is, if there exists a function f such that  $\mathbf{F} = \nabla f$ . In this situation f is called a potential function for F.

Not all vector fields are conservative, but such fields do arise frequently in physics. For example, the gravitational field F in Example 4 is conservative because if we define

 $f(x, y, z) = \frac{mMG}{\sqrt{x^2 + y^2 + z^2}}$ 

then

$$\nabla f(x, y, z) = \frac{\partial f}{\partial x} \mathbf{i} + \frac{\partial f}{\partial y} \mathbf{j} + \frac{\partial f}{\partial z} \mathbf{k}$$
$$= \frac{-mMGx}{(x^2 + y^2 + z^2)^{3/2}} \mathbf{i} + \frac{-mMGy}{(x^2 + y^2 + z^2)^{3/2}} \mathbf{j} + \frac{-mMGz}{(x^2 + y^2 + z^2)^{3/2}} \mathbf{k}$$
$$= \mathbf{F}(x, y, z)$$

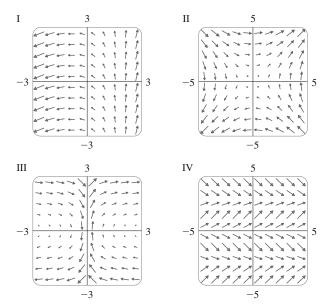
In Sections 16.3 and 16.5 we will learn how to tell whether or not a given vector field is conservative.

#### 16.I EXERCISES

| <b>I–I0</b> Sketch the vector field <b>F</b> by Figure 5 or Figure 9.               | drawing a diagram like                                                                |
|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| <b>I.</b> $F(x, y) = \frac{1}{2}(i + j)$                                            | <b>2.</b> $F(x, y) = i + x j$                                                         |
| <b>3.</b> $\mathbf{F}(x, y) = y  \mathbf{i} + \frac{1}{2}  \mathbf{j}$              | <b>4.</b> $\mathbf{F}(x, y) = (x - y)\mathbf{i} + x\mathbf{j}$                        |
| <b>5.</b> $\mathbf{F}(x, y) = \frac{y \mathbf{i} + x \mathbf{j}}{\sqrt{x^2 + y^2}}$ | <b>6.</b> $\mathbf{F}(x, y) = \frac{y  \mathbf{i} - x  \mathbf{j}}{\sqrt{x^2 + y^2}}$ |
| <b>7.</b> $F(x, y, z) = k$                                                          |                                                                                       |
| <b>8.</b> $F(x, y, z) = -y k$                                                       |                                                                                       |
| <b>9.</b> $F(x, y, z) = x k$                                                        |                                                                                       |
| <b>10.</b> $F(x, y, z) = j - i$                                                     |                                                                                       |

II-I4 Match the vector fields  $\mathbf{F}$  with the plots labeled I-IV. Give reasons for your choices.

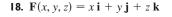
**II.**  $\mathbf{F}(x, y) = \langle y, x \rangle$ **12.**  $\mathbf{F}(x, y) = \langle 1, \sin y \rangle$ **13.**  $F(x, y) = \langle x - 2, x + 1 \rangle$ 14.  $\mathbf{F}(x, y) = \langle y, 1/x \rangle$ 

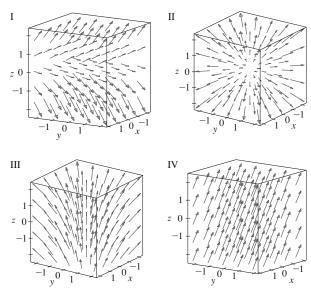


**15–18** Match the vector fields **F** on  $\mathbb{R}^3$  with the plots labeled I–IV. Give reasons for your choices.

**15.** F(x, y, z) = i + 2j + 3k **16.** F(x, y, z) = i + 2j + zk

**I7.**  $\mathbf{F}(x, y, z) = x \mathbf{i} + y \mathbf{j} + 3 \mathbf{k}$ 





[45] 19. If you have a CAS that plots vector fields (the command is fieldplot in Maple and PlotVectorField in Mathematica), use it to plot

$$\mathbf{F}(x, y) = (y^2 - 2xy)\mathbf{i} + (3xy - 6x^2)\mathbf{j}$$

Explain the appearance by finding the set of points (x, y) such that  $\mathbf{F}(x, y) = \mathbf{0}$ .

[AS] **20.** Let  $\mathbf{F}(\mathbf{x}) = (r^2 - 2r)\mathbf{x}$ , where  $\mathbf{x} = \langle x, y \rangle$  and  $r = |\mathbf{x}|$ . Use a CAS to plot this vector field in various domains until you can see what is happening. Describe the appearance of the plot and explain it by finding the points where  $\mathbf{F}(\mathbf{x}) = \mathbf{0}$ .

**21–24** Find the gradient vector field of f.

**21.** 
$$f(x, y) = xe^{xy}$$
  
**22.**  $f(x, y) = \tan(3x - 4y)$   
**23.**  $f(x, y, z) = \sqrt{x^2 + y^2 + z^2}$   
**24.**  $f(x, y, z) = x \cos(y/z)$ 

**25–26** Find the gradient vector field  $\nabla f$  of f and sketch it.

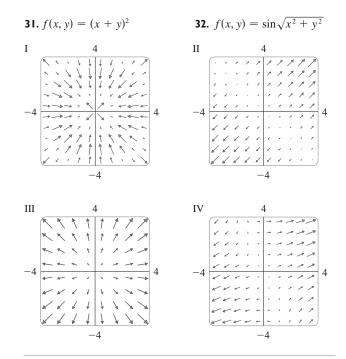
**25.** 
$$f(x, y) = x^2 - y$$
 **26.**  $f(x, y) = \sqrt{x^2 + y^2}$ 

f 27–28 Plot the gradient vector field of f together with a contour map of f. Explain how they are related to each other.

**27.** 
$$f(x, y) = \sin x + \sin y$$
 **28.**  $f(x, y) = \sin(x + y)$ 

**29–32** Match the functions f with the plots of their gradient vector fields (labeled I–IV). Give reasons for your choices.

**29.** 
$$f(x, y) = x^2 + y^2$$
 **30.**  $f(x, y) = x(x + y)$ 



- 33. A particle moves in a velocity field V(x, y) = (x<sup>2</sup>, x + y<sup>2</sup>). If it is at position (2, 1) at time t = 3, estimate its location at time t = 3.01.
- **34.** At time t = 1, a particle is located at position (1, 3). If it moves in a velocity field

$$\mathbf{F}(x, y) = \langle xy - 2, y^2 - 10 \rangle$$

find its approximate location at time t = 1.05.

- **35.** The **flow lines** (or **streamlines**) of a vector field are the paths followed by a particle whose velocity field is the given vector field. Thus the vectors in a vector field are tangent to the flow lines.
  - (a) Use a sketch of the vector field  $\mathbf{F}(x, y) = x \mathbf{i} y \mathbf{j}$  to draw some flow lines. From your sketches, can you guess the equations of the flow lines?
  - (b) If parametric equations of a flow line are x = x(t), y = y(t), explain why these functions satisfy the differential equations dx/dt = x and dy/dt = -y. Then solve the differential equations to find an equation of the flow line that passes through the point (1, 1).
- 36. (a) Sketch the vector field F(x, y) = i + x j and then sketch some flow lines. What shape do these flow lines appear to have?
  - (b) If parametric equations of the flow lines are x = x(t), y = y(t), what differential equations do these functions satisfy? Deduce that dy/dx = x.
  - (c) If a particle starts at the origin in the velocity field given by **F**, find an equation of the path it follows.

#### SECTION 16.2 LINE INTEGRALS |||| 1043

Thus

 $\int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{0}^{1} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) dt$  $= \int_{0}^{1} (t^{3} + 5t^{6}) dt = \frac{t^{4}}{4} + \frac{5t^{7}}{7} \bigg]_{0}^{1} = \frac{27}{28}$ 

Finally, we note the connection between line integrals of vector fields and line integrals of scalar fields. Suppose the vector field **F** on  $\mathbb{R}^3$  is given in component form by the equation  $\mathbf{F} = P \mathbf{i} + Q \mathbf{j} + R \mathbf{k}$ . We use Definition 13 to compute its line integral along *C*:

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{a}^{b} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) dt$$

$$= \int_{a}^{b} (P \mathbf{i} + Q \mathbf{j} + R \mathbf{k}) \cdot (x'(t) \mathbf{i} + y'(t) \mathbf{j} + z'(t) \mathbf{k}) dt$$

$$= \int_{a}^{b} \left[ P(x(t), y(t), z(t)) x'(t) + Q(x(t), y(t), z(t)) y'(t) + R(x(t), y(t), z(t)) z'(t) \right] dt$$

But this last integral is precisely the line integral in (10). Therefore we have

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{C} P \, dx + Q \, dy + R \, dz \qquad \text{where } \mathbf{F} = P \, \mathbf{i} + Q \, \mathbf{j} + R \, \mathbf{k}$$

For example, the integral  $\int_C y \, dx + z \, dy + x \, dz$  in Example 6 could be expressed as  $\int_C \mathbf{F} \cdot d\mathbf{r}$  where

$$\mathbf{F}(x, y, z) = y \,\mathbf{i} + z \,\mathbf{j} + x \,\mathbf{k}$$

# 16.2 EXERCISES

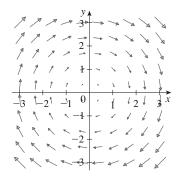
**I–I6** Evaluate the line integral, where C is the given curve.

- **I.**  $\int_C y^3 ds$ ,  $C: x = t^3$ , y = t,  $0 \le t \le 2$
- **2.**  $\int_C xy \, ds$ ,  $C: x = t^2$ , y = 2t,  $0 \le t \le 1$
- **3.**  $\int_C xy^4 ds$ , *C* is the right half of the circle  $x^2 + y^2 = 16$
- **4.**  $\int_C x \sin y \, ds$ , *C* is the line segment from (0, 3) to (4, 6)
- 5.  $\int_C (x^2 y^3 \sqrt{x}) dy,$ C is the arc of the curve  $y = \sqrt{x}$  from (1, 1) to (4, 2)
- **6.**  $\int_C xe^y dx,$ C is the arc of the curve  $x = e^y$  from (1, 0) to (e, 1)
- **7.**  $\int_C xy \, dx + (x y) \, dy$ , *C* consists of line segments from (0, 0) to (2, 0) and from (2, 0) to (3, 2)
- 8.  $\int_C \sin x \, dx + \cos y \, dy$ , C consists of the top half of the circle  $x^2 + y^2 = 1$  from (1, 0) to (-1, 0) and the line segment from (-1, 0) to (-2, 3)

- 9.  $\int_C xyz \, ds$ ,  $C: x = 2 \sin t, \ y = t, \ z = -2 \cos t, \ 0 \le t \le \pi$
- **10.**  $\int_C xyz^2 ds$ , *C* is the line segment from (-1, 5, 0) to (1, 6, 4)
- $\boxed{II.} \int_C x e^{yz} ds,$ C is the line segment from (0, 0, 0) to (1, 2, 3)
- **12.**  $\int_{C} (2x + 9z) ds$ , C: x = t,  $y = t^2$ ,  $z = t^3$ ,  $0 \le t \le 1$
- **13.**  $\int_C x^2 y \sqrt{z} \, dz$ ,  $C: x = t^3$ , y = t,  $z = t^2$ ,  $0 \le t \le 1$
- **14.**  $\int_C z \, dx + x \, dy + y \, dz,$ C:  $x = t^2$ ,  $y = t^3$ ,  $z = t^2$ ,  $0 \le t \le 1$
- **15.**  $\int_C (x + yz) dx + 2x dy + xyz dz$ , *C* consists of line segments from (1, 0, 1) to (2, 3, 1) and from (2, 3, 1) to (2, 5, 2)
- **16.**  $\int_C x^2 dx + y^2 dy + z^2 dz$ , *C* consists of line segments from (0, 0, 0) to (1, 2, -1) and from (1, 2, -1) to (3, 2, 0)

### 1044 |||| CHAPTER 16 VECTOR CALCULUS

- **17.** Let **F** be the vector field shown in the figure.
  - (a) If  $C_1$  is the vertical line segment from (-3, -3) to (-3, 3), determine whether  $\int_C \mathbf{F} \cdot d\mathbf{r}$  is positive, negative, or zero.
  - (b) If  $C_2$  is the counterclockwise-oriented circle with radius 3 and center the origin, determine whether  $\int_{C_2} \mathbf{F} \cdot d\mathbf{r}$  is positive, negative, or zero.



**18.** The figure shows a vector field  $\mathbf{F}$  and two curves  $C_1$  and  $C_2$ . Are the line integrals of  $\mathbf{F}$  over  $C_1$  and  $C_2$  positive, negative, or zero? Explain.

$$\begin{array}{c} & & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\$$

- **19–22** Evaluate the line integral  $\int_C \mathbf{F} \cdot d\mathbf{r}$ , where *C* is given by the vector function  $\mathbf{r}(t)$ .
- **19.**  $\mathbf{F}(x, y) = xy \mathbf{i} + 3y^2 \mathbf{j},$  $\mathbf{r}(t) = 11t^4 \mathbf{i} + t^3 \mathbf{j}, \quad 0 \le t \le 1$
- **20.**  $\mathbf{F}(x, y, z) = (x + y)\mathbf{i} + (y z)\mathbf{j} + z^2\mathbf{k},$  $\mathbf{r}(t) = t^2\mathbf{i} + t^3\mathbf{j} + t^2\mathbf{k}, \quad 0 \le t \le 1$
- **21.**  $\mathbf{F}(x, y, z) = \sin x \mathbf{i} + \cos y \mathbf{j} + xz \mathbf{k},$  $\mathbf{r}(t) = t^3 \mathbf{i} - t^2 \mathbf{j} + t \mathbf{k}, \quad 0 \le t \le 1$
- 22.  $\mathbf{F}(x, y, z) = z \mathbf{i} + y \mathbf{j} x \mathbf{k},$  $\mathbf{r}(t) = t \mathbf{i} + \sin t \mathbf{j} + \cos t \mathbf{k}, \quad 0 \le t \le \pi$
- **23–26** Use a calculator or CAS to evaluate the line integral correct to four decimal places.
- 23.  $\int_{C} \mathbf{F} \cdot d\mathbf{r}$ , where  $\mathbf{F}(x, y) = xy \mathbf{i} + \sin y \mathbf{j}$  and  $\mathbf{r}(t) = e^{t} \mathbf{i} + e^{-t^{2}} \mathbf{j}$ ,  $1 \le t \le 2$

- 24.  $\int_C \mathbf{F} \cdot d\mathbf{r}$ , where  $\mathbf{F}(x, y, z) = y \sin z \mathbf{i} + z \sin x \mathbf{j} + x \sin y \mathbf{k}$ and  $\mathbf{r}(t) = \cos t \mathbf{i} + \sin t \mathbf{j} + \sin 5t \mathbf{k}$ ,  $0 \le t \le \pi$
- **25.**  $\int_C x \sin(y+z) \, ds$ , where *C* has parametric equations  $x = t^2$ ,  $y = t^3$ ,  $z = t^4$ ,  $0 \le t \le 5$
- **26.**  $\int_C ze^{-xy} ds$ , where *C* has parametric equations  $x = t, y = t^2$ ,  $z = e^{-t}, 0 \le t \le 1$
- $\boxed{\text{(AS)}}$  27–28 Use a graph of the vector field **F** and the curve *C* to guess whether the line integral of **F** over *C* is positive, negative, or zero. Then evaluate the line integral.
  - 27. F(x, y) = (x y) i + xy j, *C* is the arc of the circle x<sup>2</sup> + y<sup>2</sup> = 4 traversed counter-clockwise from (2, 0) to (0, -2)

**28.** 
$$\mathbf{F}(x, y) = \frac{x}{\sqrt{x^2 + y^2}} \mathbf{i} + \frac{y}{\sqrt{x^2 + y^2}} \mathbf{j},$$
  
*C* is the parabola  $y = 1 + x^2$  from (-1, 2) to (1, 2)

- **29.** (a) Evaluate the line integral  $\int_C \mathbf{F} \cdot d\mathbf{r}$ , where  $\mathbf{F}(x, y) = e^{x-1} \mathbf{i} + xy \mathbf{j}$  and *C* is given by  $\mathbf{r}(t) = t^2 \mathbf{i} + t^3 \mathbf{j}, 0 \le t \le 1$ .
- (b) Illustrate part (a) by using a graphing calculator or computer to graph *C* and the vectors from the vector field corresponding to  $t = 0, 1/\sqrt{2}$ , and 1 (as in Figure 13).
  - **30.** (a) Evaluate the line integral  $\int_C \mathbf{F} \cdot d\mathbf{r}$ , where  $\mathbf{F}(x, y, z) = x \mathbf{i} z \mathbf{j} + y \mathbf{k}$  and *C* is given by  $\mathbf{r}(t) = 2t \mathbf{i} + 3t \mathbf{j} t^2 \mathbf{k}, -1 \le t \le 1$ .

CAS

- (b) Illustrate part (a) by using a computer to graph C and the vectors from the vector field corresponding to  $t = \pm 1$ and  $\pm \frac{1}{2}$  (as in Figure 13).
- **I**. Find the exact value of  $\int_C x^3 y^2 z \, ds$ , where *C* is the curve with parametric equations  $x = e^{-t} \cos 4t$ ,  $y = e^{-t} \sin 4t$ ,  $z = e^{-t}$ ,  $0 \le t \le 2\pi$ .
  - **32.** (a) Find the work done by the force field  $\mathbf{F}(x, y) = x^2 \mathbf{i} + xy \mathbf{j}$  on a particle that moves once around the circle  $x^2 + y^2 = 4$  oriented in the counterclockwise direction.
  - (b) Use a computer algebra system to graph the force field and circle on the same screen. Use the graph to explain your answer to part (a).
  - **33.** A thin wire is bent into the shape of a semicircle  $x^2 + y^2 = 4$ ,  $x \ge 0$ . If the linear density is a constant *k*, find the mass and center of mass of the wire.
  - **34.** A thin wire has the shape of the first-quadrant part of the circle with center the origin and radius *a*. If the density function is  $\rho(x, y) = kxy$ , find the mass and center of mass of the wire.
  - 35. (a) Write the formulas similar to Equations 4 for the center of mass (x̄, ȳ, z̄) of a thin wire in the shape of a space curve C if the wire has density function ρ(x, y, z).

- (b) Find the center of mass of a wire in the shape of the helix  $x = 2 \sin t$ ,  $y = 2 \cos t$ , z = 3t,  $0 \le t \le 2\pi$ , if the density is a constant *k*.
- **36.** Find the mass and center of mass of a wire in the shape of the helix x = t,  $y = \cos t$ ,  $z = \sin t$ ,  $0 \le t \le 2\pi$ , if the density at any point is equal to the square of the distance from the origin.
- **37.** If a wire with linear density *ρ*(*x*, *y*) lies along a plane curve *C*, its **moments of inertia** about the *x* and *y*-axes are defined as

$$I_x = \int_C y^2 \rho(x, y) \, ds \qquad I_y = \int_C x^2 \rho(x, y) \, ds$$

Find the moments of inertia for the wire in Example 3.

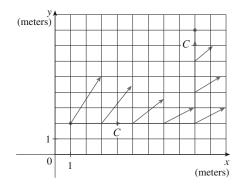
38. If a wire with linear density ρ(x, y, z) lies along a space curve C, its moments of inertia about the x-, y-, and z-axes are defined as

$$I_x = \int_C (y^2 + z^2)\rho(x, y, z) \, ds$$
$$I_y = \int_C (x^2 + z^2)\rho(x, y, z) \, ds$$
$$I_z = \int_C (x^2 + y^2)\rho(x, y, z) \, ds$$

Find the moments of inertia for the wire in Exercise 35.

- **39.** Find the work done by the force field  $\mathbf{F}(x, y) = x \mathbf{i} + (y + 2) \mathbf{j}$ in moving an object along an arch of the cycloid  $\mathbf{r}(t) = (t - \sin t) \mathbf{i} + (1 - \cos t) \mathbf{j}, 0 \le t \le 2\pi$ .
- **40.** Find the work done by the force field  $\mathbf{F}(x, y) = x \sin y \mathbf{i} + y \mathbf{j}$ on a particle that moves along the parabola  $y = x^2$  from (-1, 1) to (2, 4).
- 41. Find the work done by the force field
  F(x, y, z) = ⟨y + z, x + z, x + y⟩ on a particle that moves along the line segment from (1, 0, 0) to (3, 4, 2).
- 42. The force exerted by an electric charge at the origin on a charged particle at a point (*x*, *y*, *z*) with position vector **r** = ⟨*x*, *y*, *z*⟩ is **F**(**r**) = *K***r**/|**r**|<sup>3</sup> where *K* is a constant. (See Example 5 in Section 16.1.) Find the work done as the particle moves along a straight line from (2, 0, 0) to (2, 1, 5).
- **43.** A 160-lb man carries a 25-lb can of paint up a helical staircase that encircles a silo with a radius of 20 ft. If the silo is 90 ft high and the man makes exactly three complete revolutions, how much work is done by the man against gravity in climbing to the top?
- **44.** Suppose there is a hole in the can of paint in Exercise 43 and 9 lb of paint leaks steadily out of the can during the man's ascent. How much work is done?
- **45.** (a) Show that a constant force field does zero work on a particle that moves once uniformly around the circle  $x^2 + y^2 = 1$ .

- (b) Is this also true for a force field F(x) = kx, where k is a constant and x = (x, y)?
- **46.** The base of a circular fence with radius 10 m is given by  $x = 10 \cos t$ ,  $y = 10 \sin t$ . The height of the fence at position (x, y) is given by the function  $h(x, y) = 4 + 0.01(x^2 y^2)$ , so the height varies from 3 m to 5 m. Suppose that 1 L of paint covers 100 m<sup>2</sup>. Sketch the fence and determine how much paint you will need if you paint both sides of the fence.
- **47.** An object moves along the curve *C* shown in the figure from (1, 2) to (9, 8). The lengths of the vectors in the force field **F** are measured in newtons by the scales on the axes. Estimate the work done by **F** on the object.

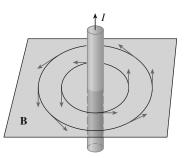


48. Experiments show that a steady current *I* in a long wire produces a magnetic field B that is tangent to any circle that lies in the plane perpendicular to the wire and whose center is the axis of the wire (as in the figure). *Ampère's Law* relates the electric current to its magnetic effects and states that

$$\int_C \mathbf{B} \cdot d\mathbf{r} = \mu_0 I$$

where *I* is the net current that passes through any surface bounded by a closed curve *C*, and  $\mu_0$  is a constant called the permeability of free space. By taking *C* to be a circle with radius *r*, show that the magnitude  $B = |\mathbf{B}|$  of the magnetic field at a distance *r* from the center of the wire is

$$B = \frac{\mu_0 I}{2\pi r}$$



which says that the work done by the force field along C is equal to the change in kinetic energy at the endpoints of C.

Now let's further assume that **F** is a conservative force field; that is, we can write  $\mathbf{F} = \nabla f$ . In physics, the **potential energy** of an object at the point (x, y, z) is defined as P(x, y, z) = -f(x, y, z), so we have  $\mathbf{F} = -\nabla P$ . Then by Theorem 2 we have

$$W = \int_{C} \mathbf{F} \cdot d\mathbf{r} = -\int_{C} \nabla P \cdot d\mathbf{r} = -[P(\mathbf{r}(b)) - P(\mathbf{r}(a))] = P(A) - P(B)$$

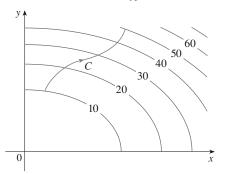
Comparing this equation with Equation 16, we see that

$$P(A) + K(A) = P(B) + K(B)$$

which says that if an object moves from one point *A* to another point *B* under the influence of a conservative force field, then the sum of its potential energy and its kinetic energy remains constant. This is called the **Law of Conservation of Energy** and it is the reason the vector field is called *conservative*.

## **I6.3** EXERCISES

**I.** The figure shows a curve *C* and a contour map of a function *f* whose gradient is continuous. Find  $\int_C \nabla f \cdot d\mathbf{r}$ .



A table of values of a function f with continuous gradient is given. Find ∫<sub>C</sub> ∇f • dr, where C has parametric equations

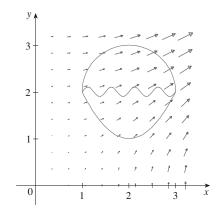
| $x = t^2 + 1$ | $y = t^3$ | +t ( | $0 \le t \le 1$ |
|---------------|-----------|------|-----------------|
| x             | 0         | 1    | 2               |
| 0             | 1         | 6    | 4               |
| 1             | 3         | 5    | 7               |
| 2             | 8         | 2    | 9               |

**3–10** Determine whether or not **F** is a conservative vector field. If it is, find a function f such that  $\mathbf{F} = \nabla f$ .

**3.** 
$$\mathbf{F}(x, y) = (2x - 3y)\mathbf{i} + (-3x + 4y - 8)\mathbf{j}$$

**4.** 
$$F(x, y) = e^x \cos y \, \mathbf{i} + e^x \sin y \, \mathbf{j}$$

- 5.  $\mathbf{F}(x, y) = e^x \sin y \, \mathbf{i} + e^x \cos y \, \mathbf{j}$
- **6.**  $\mathbf{F}(x, y) = (3x^2 2y^2)\mathbf{i} + (4xy + 3)\mathbf{j}$
- **7.**  $\mathbf{F}(x, y) = (ye^x + \sin y)\mathbf{i} + (e^x + x\cos y)\mathbf{j}$
- **8.**  $\mathbf{F}(x, y) = (xy \cos xy + \sin xy) \mathbf{i} + (x^2 \cos xy) \mathbf{j}$
- **9.**  $\mathbf{F}(x, y) = (\ln y + 2xy^3) \mathbf{i} + (3x^2y^2 + x/y) \mathbf{j}$
- 10.  $\mathbf{F}(x, y) = (xy \cosh xy + \sinh xy)\mathbf{i} + (x^2 \cosh xy)\mathbf{j}$
- **II.** The figure shows the vector field  $\mathbf{F}(x, y) = \langle 2xy, x^2 \rangle$  and three curves that start at (1, 2) and end at (3, 2).
  - (a) Explain why  $\int_C \mathbf{F} \cdot d\mathbf{r}$  has the same value for all three curves.
  - (b) What is this common value?



**12–18** (a) Find a function f such that  $\mathbf{F} = \nabla f$  and (b) use part (a) to evaluate  $\int_C \mathbf{F} \cdot d\mathbf{r}$  along the given curve C.

**12.**  $\mathbf{F}(x, y) = x^2 \mathbf{i} + y^2 \mathbf{j}$ , *C* is the arc of the parabola  $y = 2x^2$  from (-1, 2) to (2, 8)

**13.** 
$$\mathbf{F}(x, y) = xy^2 \mathbf{i} + x^2 y \mathbf{j},$$
  
 $C: \mathbf{r}(t) = \langle t + \sin \frac{1}{2}\pi t, t + \cos \frac{1}{2}\pi t \rangle, \quad 0 \le t \le 1$ 

14.  $\mathbf{F}(x, y) = \frac{y^2}{1 + x^2} \mathbf{i} + 2y \arctan x \mathbf{j},$  $C: \mathbf{r}(t) = t^2 \mathbf{i} + 2t \mathbf{j}, \quad 0 \le t \le 1$ 

- **15.**  $\mathbf{F}(x, y, z) = yz \,\mathbf{i} + xz \,\mathbf{j} + (xy + 2z) \,\mathbf{k},$ *C* is the line segment from (1, 0, -2) to (4, 6, 3)
- **16.**  $\mathbf{F}(x, y, z) = (2xz + y^2)\mathbf{i} + 2xy\mathbf{j} + (x^2 + 3z^2)\mathbf{k},$  $C: x = t^2, y = t + 1, z = 2t - 1, 0 \le t \le 1$
- 17.  $\mathbf{F}(x, y, z) = y^2 \cos z \, \mathbf{i} + 2xy \cos z \, \mathbf{j} xy^2 \sin z \, \mathbf{k},$  $C: \mathbf{r}(t) = t^2 \, \mathbf{i} + \sin t \, \mathbf{j} + t \, \mathbf{k}, \quad 0 \le t \le \pi$
- **18.**  $\mathbf{F}(x, y, z) = e^{y}\mathbf{i} + xe^{y}\mathbf{j} + (z + 1)e^{z}\mathbf{k},$  $C: \mathbf{r}(t) = t \mathbf{i} + t^{2}\mathbf{j} + t^{3}\mathbf{k}, \quad 0 \le t \le 1$

**19–20** Show that the line integral is independent of path and evaluate the integral.

19.  $\int_C \tan y \, dx + x \sec^2 y \, dy,$ C is any path from (1, 0) to (2,  $\pi/4$ )

**20.**  $\int_C (1 - ye^{-x}) dx + e^{-x} dy$ , *C* is any path from (0, 1) to (1, 2)

**21–22** Find the work done by the force field **F** in moving an object from P to Q.

- **21.**  $\mathbf{F}(x, y) = 2y^{3/2}\mathbf{i} + 3x\sqrt{y}\mathbf{j}; P(1, 1), Q(2, 4)$
- **22.**  $\mathbf{F}(x, y) = e^{-y}\mathbf{i} xe^{-y}\mathbf{j}; P(0, 1), Q(2, 0)$

**23–24** Is the vector field shown in the figure conservative? Explain.

**25.** If  $\mathbf{F}(x, y) = \sin y \mathbf{i} + (1 + x \cos y) \mathbf{j}$ , use a plot to guess whether  $\mathbf{F}$  is conservative. Then determine whether your guess is correct.

**26.** Let  $\mathbf{F} = \nabla f$ , where  $f(x, y) = \sin(x - 2y)$ . Find curves  $C_1$  and  $C_2$  that are not closed and satisfy the equation.

(a) 
$$\int_{C_1} \mathbf{F} \cdot d\mathbf{r} = 0$$
 (b)  $\int_{C_2} \mathbf{F} \cdot d\mathbf{r} = 1$ 

**27.** Show that if the vector field  $\mathbf{F} = P \mathbf{i} + Q \mathbf{j} + R \mathbf{k}$  is conservative and *P*, *Q*, *R* have continuous first-order partial derivatives, then

| $\partial P$                    | $\partial Q$             | $\partial P$                      | $\partial R$                    | $\partial Q$                      | $\partial R$ |
|---------------------------------|--------------------------|-----------------------------------|---------------------------------|-----------------------------------|--------------|
| $\frac{\partial y}{\partial y}$ | $= \frac{1}{\partial x}$ | $\frac{\partial z}{\partial z} =$ | $\frac{\partial x}{\partial x}$ | $\frac{\partial z}{\partial z} =$ | dy           |

**28.** Use Exercise 27 to show that the line integral  $\int_C y \, dx + x \, dy + xyz \, dz$  is not independent of path.

**29–32** Determine whether or not the given set is (a) open, (b) connected, and (c) simply-connected.

**29.**  $\{(x, y) | x > 0, y > 0\}$ **30.**  $\{(x, y) | x \neq 0\}$ **31.**  $\{(x, y) | 1 < x^2 + y^2 < 4\}$ 

**32.** 
$$\{(x, y) \mid x^2 + y^2 \le 1 \text{ or } 4 \le x^2 + y^2 \le 9\}$$

**33.** Let 
$$\mathbf{F}(x, y) = \frac{-y \,\mathbf{i} + x \,\mathbf{j}}{x^2 + y^2}$$
.

- (a) Show that  $\partial P/\partial y = \partial Q/\partial x$ .
- (b) Show that ∫<sub>C</sub> F ⋅ dr is not independent of path.
  [*Hint:* Compute ∫<sub>C1</sub> F ⋅ dr and ∫<sub>C2</sub> F ⋅ dr, where C1 and C2 are the upper and lower halves of the circle x<sup>2</sup> + y<sup>2</sup> = 1 from (1, 0) to (-1, 0).] Does this contradict Theorem 6?
- **34.** (a) Suppose that **F** is an inverse square force field, that is,

$$\mathbf{F}(\mathbf{r}) = \frac{c\,\mathbf{r}}{|\,\mathbf{r}\,|^3}$$

for some constant *c*, where  $\mathbf{r} = x \mathbf{i} + y \mathbf{j} + z \mathbf{k}$ . Find the work done by **F** in moving an object from a point *P*<sub>1</sub> along a path to a point *P*<sub>2</sub> in terms of the distances *d*<sub>1</sub> and *d*<sub>2</sub> from these points to the origin.

- (b) An example of an inverse square field is the gravitational field  $\mathbf{F} = -(mMG)\mathbf{r}/|\mathbf{r}|^3$  discussed in Example 4 in Section 16.1. Use part (a) to find the work done by the gravitational field when the earth moves from aphelion (at a maximum distance of  $1.52 \times 10^8$  km from the sun) to perihelion (at a minimum distance of  $1.47 \times 10^8$  km). (Use the values  $m = 5.97 \times 10^{24}$  kg,  $M = 1.99 \times 10^{30}$  kg, and  $G = 6.67 \times 10^{-11}$  N·m<sup>2</sup>/kg<sup>2</sup>.)
- (c) Another example of an inverse square field is the electric force field  $\mathbf{F} = \varepsilon q Q \mathbf{r} / |\mathbf{r}|^3$  discussed in Example 5 in Section 16.1. Suppose that an electron with a charge of  $-1.6 \times 10^{-19}$  C is located at the origin. A positive unit charge is positioned a distance  $10^{-12}$  m from the electron and moves to a position half that distance from the electron. Use part (a) to find the work done by the electric force field. (Use the value  $\varepsilon = 8.985 \times 10^{9}$ .)

We now easily compute this last integral using the parametrization given by  $\mathbf{r}(t) = a \cos t \, \mathbf{i} + a \sin t \, \mathbf{j}, \, 0 \le t \le 2\pi$ . Thus

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{C'} \mathbf{F} \cdot d\mathbf{r} = \int_{0}^{2\pi} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) dt$$
$$= \int_{0}^{2\pi} \frac{(-a\sin t)(-a\sin t) + (a\cos t)(a\cos t)}{a^{2}\cos^{2}t + a^{2}\sin^{2}t} dt = \int_{0}^{2\pi} dt = 2\pi$$

We end this section by using Green's Theorem to discuss a result that was stated in the preceding section.

SKETCH OF PROOF OF THEOREM 16.3.6 We're assuming that  $\mathbf{F} = P \mathbf{i} + Q \mathbf{j}$  is a vector field on an open simply-connected region D, that P and Q have continuous first-order partial derivatives, and that

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x} \qquad \text{throughout } D$$

If C is any simple closed path in D and R is the region that C encloses, then Green's Theorem gives

$$\oint_C \mathbf{F} \cdot d\mathbf{r} = \oint_C P \, dx + Q \, dy = \iint_R \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dA = \iint_R 0 \, dA = 0$$

A curve that is not simple crosses itself at one or more points and can be broken up into a number of simple curves. We have shown that the line integrals of **F** around these simple curves are all 0 and, adding these integrals, we see that  $\int_C \mathbf{F} \cdot d\mathbf{r} = 0$  for any closed curve *C*. Therefore  $\int_C \mathbf{F} \cdot d\mathbf{r}$  is independent of path in *D* by Theorem 16.3.3. It follows that **F** is a conservative vector field.

## 16.4 EXERCISES

**I**-4 Evaluate the line integral by two methods: (a) directly and (b) using Green's Theorem.

- 1.  $\oint_C (x y) dx + (x + y) dy$ , *C* is the circle with center the origin and radius 2
- **2.**  $\oint_C xy \, dx + x^2 \, dy$ , *C* is the rectangle with vertices (0, 0), (3, 0), (3, 1), and (0, 1)
- **3.**  $\oint_C xy \, dx + x^2 y^3 \, dy,$ *C* is the triangle with vertices (0, 0), (1, 0), and (1, 2)
- **4.**  $\oint_C x \, dx + y \, dy$ , *C* consists of the line segments from (0, 1) to (0, 0) and from (0, 0) to (1, 0) and the parabola  $y = 1 x^2$  from (1, 0) to (0, 1)

**5–10** Use Green's Theorem to evaluate the line integral along the given positively oriented curve.

**5.**  $\int_C xy^2 dx + 2x^2 y dy$ , *C* is the triangle with vertices (0, 0), (2, 2), and (2, 4)

- **6.**  $\int_C \cos y \, dx + x^2 \sin y \, dy$ , *C* is the rectangle with vertices (0, 0), (5, 0), (5, 2), and (0, 2)
- **7.**  $\int_{C} (y + e^{\sqrt{x}}) dx + (2x + \cos y^2) dy,$ C is the boundary of the region enclosed by the parabolas  $y = x^2$  and  $x = y^2$
- 8.  $\int_C xe^{-2x} dx + (x^4 + 2x^2y^2) dy,$ C is the boundary of the region between the circles  $x^2 + y^2 = 1$  and  $x^2 + y^2 = 4$
- 9.  $\int_C y^3 dx x^3 dy$ , C is the circle  $x^2 + y^2 = 4$
- 10.  $\int_C \sin y \, dx + x \cos y \, dy, \quad C \text{ is the ellipse } x^2 + xy + y^2 = 1$

**II-I4** Use Green's Theorem to evaluate  $\int_C \mathbf{F} \cdot d\mathbf{r}$ . (Check the orientation of the curve before applying the theorem.)

**II.**  $\mathbf{F}(x, y) = \langle \sqrt{x} + y^3, x^2 + \sqrt{y} \rangle$ , *C* consists of the arc of the curve  $y = \sin x$  from (0, 0) to ( $\pi$ , 0) and the line segment from ( $\pi$ , 0) to (0, 0)

## SECTION 16.5 CURL AND DIVERGENCE |||| 1061

- **12.**  $\mathbf{F}(x, y) = \langle y^2 \cos x, x^2 + 2y \sin x \rangle$ , *C* is the triangle from (0, 0) to (2, 6) to (2, 0) to (0, 0)
- **13.**  $\mathbf{F}(x, y) = \langle e^x + x^2 y, e^y xy^2 \rangle$ , *C* is the circle  $x^2 + y^2 = 25$  oriented clockwise
- 14.  $\mathbf{F}(x, y) = \langle y \ln(x^2 + y^2), 2 \tan^{-1}(y/x) \rangle$ , *C* is the circle  $(x 2)^2 + (y 3)^2 = 1$  oriented counterclockwise
- **[AS] 15–16** Verify Green's Theorem by using a computer algebra system to evaluate both the line integral and the double integral.
  - **15.**  $P(x, y) = y^2 e^x$ ,  $Q(x, y) = x^2 e^y$ , *C* consists of the line segment from (-1, 1) to (1, 1) followed by the arc of the parabola  $y = 2 - x^2$  from (1, 1) to (-1, 1)
  - **16.**  $P(x, y) = 2x x^3y^5$ ,  $Q(x, y) = x^3y^8$ , C is the ellipse  $4x^2 + y^2 = 4$
  - **17.** Use Green's Theorem to find the work done by the force  $\mathbf{F}(x, y) = x(x + y) \mathbf{i} + xy^2 \mathbf{j}$  in moving a particle from the origin along the *x*-axis to (1, 0), then along the line segment to (0, 1), and then back to the origin along the *y*-axis.
  - **18.** A particle starts at the point (-2, 0), moves along the *x*-axis to (2, 0), and then along the semicircle  $y = \sqrt{4 x^2}$  to the starting point. Use Green's Theorem to find the work done on this particle by the force field  $\mathbf{F}(x, y) = \langle x, x^3 + 3xy^2 \rangle$ .
  - **19.** Use one of the formulas in (5) to find the area under one arch of the cycloid  $x = t \sin t$ ,  $y = 1 \cos t$ .
- **20.** If a circle *C* with radius 1 rolls along the outside of the circle  $x^2 + y^2 = 16$ , a fixed point *P* on *C* traces out a curve called an *epicycloid*, with parametric equations  $x = 5 \cos t \cos 5t$ ,  $y = 5 \sin t \sin 5t$ . Graph the epicycloid and use (5) to find the area it encloses.
  - **21.** (a) If *C* is the line segment connecting the point  $(x_1, y_1)$  to the point  $(x_2, y_2)$ , show that

$$\int_C x \, dy - y \, dx = x_1 y_2 - x_2 y_1$$

(b) If the vertices of a polygon, in counterclockwise order, are (x<sub>1</sub>, y<sub>1</sub>), (x<sub>2</sub>, y<sub>2</sub>), ..., (x<sub>n</sub>, y<sub>n</sub>), show that the area of the polygon is

$$A = \frac{1}{2} [(x_1y_2 - x_2y_1) + (x_2y_3 - x_3y_2) + \cdots + (x_{n-1}y_n - x_ny_{n-1}) + (x_ny_1 - x_1y_n)]$$

16.5

- (c) Find the area of the pentagon with vertices (0, 0), (2, 1), (1, 3), (0, 2), and (-1, 1).

$$\overline{x} = \frac{1}{2A} \oint_C x^2 dy$$
  $\overline{y} = -\frac{1}{2A} \oint_C y^2 dx$ 

where A is the area of D.

- **23.** Use Exercise 22 to find the centroid of a quarter-circular region of radius *a*.
- **24.** Use Exercise 22 to find the centroid of the triangle with vertices (0, 0), (a, 0), and (a, b), where a > 0 and b > 0.
- 25. A plane lamina with constant density ρ(x, y) = ρ occupies a region in the *xy*-plane bounded by a simple closed path *C*. Show that its moments of inertia about the axes are

$$I_x = -\frac{\rho}{3} \oint_C y^3 dx \qquad \qquad I_y = \frac{\rho}{3} \oint_C x^3 dy$$

- 26. Use Exercise 25 to find the moment of inertia of a circular disk of radius *a* with constant density *ρ* about a diameter. (Compare with Example 4 in Section 15.5.)
- **27.** If **F** is the vector field of Example 5, show that  $\int_C \mathbf{F} \cdot d\mathbf{r} = 0$  for every simple closed path that does not pass through or enclose the origin.
- **28.** Complete the proof of the special case of Green's Theorem by proving Equation 3.
- **29.** Use Green's Theorem to prove the change of variables formula for a double integral (Formula 15.9.9) for the case where f(x, y) = 1:

$$\iint\limits_{R} dx \, dy = \iint\limits_{S} \left| \frac{\partial(x, y)}{\partial(u, v)} \right| du \, dv$$

Here *R* is the region in the *xy*-plane that corresponds to the region *S* in the *uv*-plane under the transformation given by x = g(u, v), y = h(u, v).

[*Hint:* Note that the left side is A(R) and apply the first part of Equation 5. Convert the line integral over  $\partial R$  to a line integral over  $\partial S$  and apply Green's Theorem in the *uv*-plane.]

## CURL AND DIVERGENCE

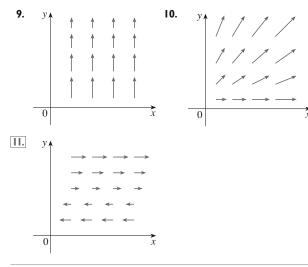
In this section we define two operations that can be performed on vector fields and that play a basic role in the applications of vector calculus to fluid flow and electricity and magnetism. Each operation resembles differentiation, but one produces a vector field whereas the other produces a scalar field.

# 16.5 EXERCISES

- I-8 Find (a) the curl and (b) the divergence of the vector field.
- **1.**  $\mathbf{F}(x, y, z) = xyz \,\mathbf{i} x^2 y \,\mathbf{k}$  **2.**  $\mathbf{F}(x, y, z) = x^2 yz \,\mathbf{i} + xy^2 z \,\mathbf{j} + xyz^2 \,\mathbf{k}$ **3.**  $\mathbf{F}(x, y, z) = \mathbf{i} + (x + yz) \,\mathbf{j} + (xy - \sqrt{z}) \,\mathbf{k}$
- 4.  $\mathbf{F}(x, y, z) = \cos xz \mathbf{j} \sin xy \mathbf{k}$
- **5.**  $\mathbf{F}(x, y, z) = \frac{1}{\sqrt{x^2 + y^2 + z^2}} (x \, \mathbf{i} + y \, \mathbf{j} + z \, \mathbf{k})$
- **6.**  $\mathbf{F}(x, y, z) = e^{xy} \sin z \mathbf{j} + y \tan^{-1}(x/z) \mathbf{k}$
- **7.**  $\mathbf{F}(x, y, z) = \langle \ln x, \ln(xy), \ln(xyz) \rangle$
- **8.**  $\mathbf{F}(x, y, z) = \langle e^x, e^{xy}, e^{xyz} \rangle$

**9–11** The vector field  $\mathbf{F}$  is shown in the *xy*-plane and looks the same in all other horizontal planes. (In other words,  $\mathbf{F}$  is independent of *z* and its *z*-component is 0.)

- (a) Is div F positive, negative, or zero? Explain.
- (b) Determine whether curl  $\mathbf{F} = \mathbf{0}$ . If not, in which direction does curl  $\mathbf{F}$  point?



- **12.** Let *f* be a scalar field and **F** a vector field. State whether each expression is meaningful. If not, explain why. If so, state whether it is a scalar field or a vector field.
  - (a) curl *f*(c) div **F**

(e) grad **F**(g) div(grad *f*)

(f)  $grad(div \mathbf{F})$ 

(b) grad f

(d)  $\operatorname{curl}(\operatorname{grad} f)$ 

(j)  $div(div \mathbf{F})$ 

- (h)  $\operatorname{grad}(\operatorname{div} f)$
- (i) curl(curl **F**)
- (k)  $(\operatorname{grad} f) \times (\operatorname{div} \mathbf{F})$  (1)  $\operatorname{div}(\operatorname{curl}(\operatorname{grad} f))$

**I3–I8** Determine whether or not the vector field is conservative. If it is conservative, find a function f such that  $\mathbf{F} = \nabla f$ .

- **13.**  $\mathbf{F}(x, y, z) = y^2 z^3 \mathbf{i} + 2xyz^3 \mathbf{j} + 3xy^2 z^2 \mathbf{k}$
- **14.**  $\mathbf{F}(x, y, z) = xyz^2 \mathbf{i} + x^2 yz^2 \mathbf{j} + x^2 y^2 z \mathbf{k}$
- **15.**  $\mathbf{F}(x, y, z) = 2xy\mathbf{i} + (x^2 + 2yz)\mathbf{j} + y^2\mathbf{k}$
- **16.**  $F(x, y, z) = e^{z} i + j + xe^{z} k$
- **17.**  $\mathbf{F}(x, y, z) = ye^{-x}\mathbf{i} + e^{-x}\mathbf{j} + 2z\mathbf{k}$
- **18.**  $\mathbf{F}(x, y, z) = y \cos xy \mathbf{i} + x \cos xy \mathbf{j} \sin z \mathbf{k}$
- **19.** Is there a vector field **G** on  $\mathbb{R}^3$  such that curl **G** =  $\langle x \sin y, \cos y, z xy \rangle$ ? Explain.
- **20.** Is there a vector field **G** on  $\mathbb{R}^3$  such that curl  $\mathbf{G} = \langle xyz, -y^2z, yz^2 \rangle$ ? Explain.
- **21.** Show that any vector field of the form

$$\mathbf{F}(x, y, z) = f(x)\mathbf{i} + g(y)\mathbf{j} + h(z)\mathbf{k}$$

where f, g, h are differentiable functions, is irrotational.

22. Show that any vector field of the form

 $\mathbf{F}(x, y, z) = f(y, z) \mathbf{i} + g(x, z) \mathbf{j} + h(x, y) \mathbf{k}$ 

is incompressible.

**23–29** Prove the identity, assuming that the appropriate partial derivatives exist and are continuous. If f is a scalar field and **F**, **G** are vector fields, then f **F**, **F**  $\cdot$  **G**, and **F**  $\times$  **G** are defined by

$$(f \mathbf{F})(x, y, z) = f(x, y, z) \mathbf{F}(x, y, z)$$
$$(\mathbf{F} \cdot \mathbf{G})(x, y, z) = \mathbf{F}(x, y, z) \cdot \mathbf{G}(x, y, z)$$

$$(\mathbf{F} \times \mathbf{G})(x, y, z) = \mathbf{F}(x, y, z) \times \mathbf{G}(x, y, z)$$

- **23.**  $\operatorname{div}(\mathbf{F} + \mathbf{G}) = \operatorname{div} \mathbf{F} + \operatorname{div} \mathbf{G}$
- **24.**  $\operatorname{curl}(\mathbf{F} + \mathbf{G}) = \operatorname{curl} \mathbf{F} + \operatorname{curl} \mathbf{G}$
- **25.** div $(f\mathbf{F}) = f \operatorname{div} \mathbf{F} + \mathbf{F} \cdot \nabla f$
- **26.**  $\operatorname{curl}(f\mathbf{F}) = f \operatorname{curl} \mathbf{F} + (\nabla f) \times \mathbf{F}$
- **27.** div $(\mathbf{F} \times \mathbf{G}) = \mathbf{G} \cdot \operatorname{curl} \mathbf{F} \mathbf{F} \cdot \operatorname{curl} \mathbf{G}$

**28.** div
$$(\nabla f \times \nabla g) = 0$$

**29.** curl(curl  $\mathbf{F}$ ) = grad(div  $\mathbf{F}$ ) -  $\nabla^2 \mathbf{F}$ 

**30–32** Let  $\mathbf{r} = x \mathbf{i} + y \mathbf{j} + z \mathbf{k}$  and  $r = |\mathbf{r}|$ .

- **30.** Verify each identity.
- (a)  $\nabla \cdot \mathbf{r} = 3$ (b)  $\nabla \cdot (r\mathbf{r}) = 4r$ (c)  $\nabla^2 r^3 = 12r$

### SECTION 16.5 CURLAND DIVERGENCE |||| 1069

**31.** Verify each identity.

(a) 
$$\nabla r = \mathbf{r}/r$$
 (b)  $\nabla \times \mathbf{r} = \mathbf{0}$   
(c)  $\nabla(1/r) = -\mathbf{r}/r^3$  (d)  $\nabla \ln r = \mathbf{r}/r^2$ 

- **32.** If  $\mathbf{F} = \mathbf{r}/r^p$ , find div **F**. Is there a value of *p* for which div  $\mathbf{F} = 0$ ?
- **33.** Use Green's Theorem in the form of Equation 13 to prove **Green's first identity**:

$$\iint_{D} f \nabla^{2} g \, dA = \oint_{C} f(\nabla g) \cdot \mathbf{n} \, ds - \iint_{D} \nabla f \cdot \nabla g \, dA$$

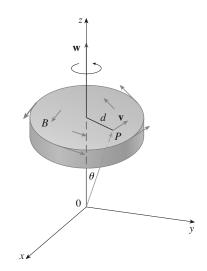
where *D* and *C* satisfy the hypotheses of Green's Theorem and the appropriate partial derivatives of *f* and *g* exist and are continuous. (The quantity  $\nabla g \cdot \mathbf{n} = D_n g$  occurs in the line integral. This is the directional derivative in the direction of the normal vector **n** and is called the **normal derivative** of *g*.)

**34.** Use Green's first identity (Exercise 33) to prove **Green's second identity**:

$$\iint_{D} \left( f \nabla^2 g - g \nabla^2 f \right) dA = \oint_{C} \left( f \nabla g - g \nabla f \right) \cdot \mathbf{n} \, ds$$

where D and C satisfy the hypotheses of Green's Theorem and the appropriate partial derivatives of f and g exist and are continuous.

- **35.** Recall from Section 14.3 that a function g is called *harmonic* on D if it satisfies Laplace's equation, that is,  $\nabla^2 g = 0$  on D. Use Green's first identity (with the same hypotheses as in Exercise 33) to show that if g is harmonic on D, then  $\oint_C D_n g \, ds = 0$ . Here  $D_n g$  is the normal derivative of g defined in Exercise 33.
- **36.** Use Green's first identity to show that if *f* is harmonic on *D*, and if f(x, y) = 0 on the boundary curve *C*, then  $\iint_{D} |\nabla f|^2 dA = 0.$  (Assume the same hypotheses as in Exercise 33.)
- 37. This exercise demonstrates a connection between the curl vector and rotations. Let *B* be a rigid body rotating about the *z*-axis. The rotation can be described by the vector w = ωk, where ω is the angular speed of *B*, that is, the tangential speed of any point *P* in *B* divided by the distance *d* from the axis of rotation. Let r = ⟨x, y, z⟩ be the position vector of *P*.
  (a) By considering the angle θ in the figure, show that the
  - velocity field of *B* is given by  $\mathbf{v} = \mathbf{w} \times \mathbf{r}$ .
  - (b) Show that  $\mathbf{v} = -\omega y \mathbf{i} + \omega x \mathbf{j}$ .
  - (c) Show that  $\operatorname{curl} \mathbf{v} = 2\mathbf{w}$ .



**38.** Maxwell's equations relating the electric field **E** and magnetic field **H** as they vary with time in a region containing no charge and no current can be stated as follows:

div 
$$\mathbf{E} = 0$$
 div  $\mathbf{H} = 0$   
curl  $\mathbf{E} = -\frac{1}{c} \frac{\partial \mathbf{H}}{\partial t}$  curl  $\mathbf{H} = \frac{1}{c} \frac{\partial \mathbf{E}}{\partial t}$ 

where c is the speed of light. Use these equations to prove the following:

(a) 
$$\nabla \times (\nabla \times \mathbf{E}) = -\frac{1}{c^2} \frac{\partial^2 \mathbf{E}}{\partial t^2}$$
  
(b)  $\nabla \times (\nabla \times \mathbf{H}) = -\frac{1}{c^2} \frac{\partial^2 \mathbf{H}}{\partial t^2}$   
(c)  $\nabla^2 \mathbf{E} = \frac{1}{c^2} \frac{\partial^2 \mathbf{E}}{\partial t^2}$  [*Hint:* Use Exercise 29.]  
(d)  $\nabla^2 \mathbf{H} = \frac{1}{c^2} \frac{\partial^2 \mathbf{H}}{\partial t^2}$ 

39. We have seen that all vector fields of the form F = ∇g satisfy the equation curl F = 0 and that all vector fields of the form F = curl G satisfy the equation div F = 0 (assuming continuity of the appropriate partial derivatives). This suggests the question: Are there any equations that all functions of the form f = div G must satisfy? Show that the answer to this question is "No" by proving that *every* continuous function f on ℝ<sup>3</sup> is the divergence of some vector field. [*Hint:* Let G(x, y, z) = ⟨g(x, y, z), 0, 0⟩, where g(x, y, z) = ∫<sub>0</sub><sup>x</sup> f(t, y, z) dt.]