
Notice also that the gradient vectors are long where the level curves are close to each
other and short where the curves are farther apart. That’s because the length of the gradi-
ent vector is the value of the directional derivative of and closely spaced level curves
indicate a steep graph. M

A vector field is called a conservative vector field if it is the gradient of some scalar
function, that is, if there exists a function such that . In this situation is called
a potential function for .

Not all vector fields are conservative, but such fields do arise frequently in physics. For
example, the gravitational field F in Example 4 is conservative because if we define

then

In Sections 16.3 and 16.5 we will learn how to tell whether or not a given vector field is
conservative.

 � F�x, y, z�

 �
�mMGx

�x 2 � y 2 � z 2 �3�2  i �
�mMGy

�x 2 � y 2 � z 2 �3�2  j �
�mMGz

�x 2 � y 2 � z 2 �3�2  k

 � f �x, y, z� �
�f

�x
 i �

�f

�y
 j �

�f

�z
 k

f �x, y, z� �
mMG

sx 2 � y 2 � z 2 

F
fF � ∇ ff

F

f
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15–18 Match the vector fields on with the plots labeled I–IV.
Give reasons for your choices.

15. 16. F�x, y, z� � i � 2 j � z kF�x, y, z� � i � 2 j � 3 k

�3F

3

_3

_3 3

5

_5

_5 5

5

_5

_5 5

I II

III IV3

_3

_3 3

1–10 Sketch the vector field by drawing a diagram like 
Figure 5 or Figure 9.

1. 2.

3. 4.

6.

7.

8.

9.

10.

11–14 Match the vector fields with the plots labeled I–IV. 
Give reasons for your choices.

12.

13.

14. F�x, y� � � y, 1�x�

F�x, y� � �x � 2, x � 1 �

F�x, y� � �1, sin y �

F�x, y� � � y, x�11.

F

F�x, y, z� � j � i

F�x, y, z� � x k

F�x, y, z� � �y k

F�x, y, z� � k

F�x, y� �
y i � x j
sx 2 � y 2 

F�x, y� �
y i � x j
sx 2 � y 2 

5.

F�x, y� � �x � y� i � x jF�x, y� � y i �
1
2 j

F�x, y� � i � x jF�x, y� � 1
2�i � j�

F
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31. 32.

33. A particle moves in a velocity field . 
If it is at position at time , estimate its location at
time .

34. At time , a particle is located at position . If it
moves in a velocity field 

find its approximate location at time .

The flow lines (or streamlines) of a vector field are the paths
followed by a particle whose velocity field is the given vector
field. Thus the vectors in a vector field are tangent to the flow
lines.
(a) Use a sketch of the vector field to

draw some flow lines. From your sketches, can you guess
the equations of the flow lines?

(b) If parametric equations of a flow line are
, explain why these functions satisfy the differ-

ential equations and . Then solve
the differential equations to find an equation of the flow
line that passes through the point (1, 1).

36. (a) Sketch the vector field and then sketch
some flow lines. What shape do these flow lines appear
to have?

(b) If parametric equations of the flow lines are 
, what differential equations do these functions 

satisfy? Deduce that .
(c) If a particle starts at the origin in the velocity field given

by F, find an equation of the path it follows.

dy�dx � x
y � y�t�

x � x�t�,

F�x, y� � i � x j

dy�dt � �ydx�dt � x
y � y�t�

x � x�t�,

F�x, y� � x i � y j

35.

t � 1.05

F�x, y� � �xy � 2, y 2 � 10 �

�1, 3�t � 1

t � 3.01
t � 3�2, 1�

V�x, y� � �x 2, x � y 2 �

4

_4

_4 4

4

_4

_4 4

4

_4

_4 4

I II

III IV4

_4

_4 4

f �x, y� � sinsx 2 � y 2 f �x, y� � �x � y�2

18.

19. If you have a CAS that plots vector fields (the command 
is fieldplot in Maple and PlotVectorField in 
Mathematica), use it to plot

Explain the appearance by finding the set of points 
such that .

20. Let , where and . Use a
CAS to plot this vector field in various domains until you can
see what is happening. Describe the appearance of the plot
and explain it by finding the points where .

21–24 Find the gradient vector field of .

21. 22.

24.

25–26 Find the gradient vector field of and sketch it.

25. 26.

27–28 Plot the gradient vector field of together with a contour
map of . Explain how they are related to each other.

27. 28.

29–32 Match the functions with the plots of their gradient 
vector fields (labeled I–IV). Give reasons for your choices.

30. f �x, y� � x�x � y�f �x, y� � x 2 � y 229.

f

f �x, y� � sin�x � y�f �x, y� � sin x � sin y

f
fCAS

f �x, y� � sx 2 � y2 f �x, y� � x 2 � y

f∇ f

f �x, y, z� � x cos�y�z�f �x, y, z� � sx 2 � y 2 � z 2 23.

f �x, y� � tan�3x � 4y�f �x, y� � xe xy

f

F�x� � 0

r � � x �x � �x, y�F�x� � �r 2 � 2r�xCAS

F�x, y� � 0
�x, y�

F�x, y� � �y 2 � 2xy� i � �3xy � 6x 2 � j

CAS

z

1

0

_1

y 10
_1

x1
0
_1

z

1

0

_1

y 10
_1

x1
0
_1

0
y 1_1 x1 0

_1

z

1

0

_1

z

1

0

_1

y
10_1 1 0

_1
x

I II

III IV

F�x, y, z� � x i � y j � z k

F�x, y, z� � x i � y j � 3 k17.
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Thus

M

Finally, we note the connection between line integrals of vector fields and line integrals
of scalar fields. Suppose the vector field on is given in component form by the equa-
tion . We use Definition 13 to compute its line integral along :

But this last integral is precisely the line integral in (10). Therefore we have

For example, the integral in Example 6 could be expressed as
where

F�x, y, z� � y i � z j � x k

x
C
 F � dr

x
C
 y dx � z dy � x dz

where F � P i � Q j � R ky
C
 F � dr � y

C
 P dx � Q dy � R dz

 � yb

a
 [P(x�t�, y�t�, z�t�) x��t� � Q(x�t�, y�t�, z�t�) y��t� � R(x�t�, y�t�, z�t�) z��t�] dt

 � yb

a
 �P i � Q j � R k� � (x��t� i � y��t� j � z��t� k) dt

 y
C
 F � dr � yb

a
 F�r�t�� � r��t� dt

CF � P i � Q j � R k
� 3F

 � y1

0
 �t 3 � 5t 6 � dt �

t 4

4
�

5t 7

7 �0

1

�
27

28

 y
C
 F � dr � y1

0
 F�r�t�� � r��t� dt
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9. ,

10. ,
is the line segment from to 

,
is the line segment from (0, 0, 0) to (1, 2, 3)

12. , : , , ,

13. , : , , ,

14. ,
: , , ,

15. , consists of line 
segments from to and from to

16. , consists of line segments from
to and from to �3, 2, 0��1, 2, �1��1, 2, �1��0, 0, 0�

CxC x 2 dx � y 2 dy � z 2 dz

�2, 5, 2�
�2, 3, 1��2, 3, 1��1, 0, 1�

CxC �x � yz� dx � 2x dy � xyz dz

0 � t � 1z � t 2y � t 3x � t 2C
xC z dx � x dy � y dz

0 � t � 1z � t 2y � tx � t 3CxC x 2 ysz  dz

0 � t � 1z � t 3y � t 2x � tCx
C
 �2x � 9z� ds

C
xC xe yz ds11.

�1, 6, 4���1, 5, 0�C
xC xyz2 ds

C: x � 2 sin t, y � t, z � �2 cos t, 0 � t � �
xC xyz ds1–16 Evaluate the line integral, where is the given curve.

1. ,

2. ,

, is the right half of the circle 

4. , is the line segment from to 

5. ,
is the arc of the curve from to 

6. ,
C is the arc of the curve from (1, 0) to 

, consists of line segments from
to and from to 

8. , consists of the top half of the circle 
from to and the line segment from

to ��2, 3���1, 0�
��1, 0��1, 0�x 2 � y 2 � 1

CxC sin x dx � cos y dy

�3, 2��2, 0��2, 0��0, 0�
CxC xy dx � �x � y� dy7.

�e, 1�x � e y

xC xe y dx

�4, 2��1, 1�y � sx C
x

C
 (x 2y 3 � sx ) dy

�4, 6��0, 3�CxC x sin y ds

x 2 � y 2 � 16CxC xy 4 ds3.

C: x � t 2, y � 2t, 0 � t � 1xC xy ds

C: x � t 3, y � t, 0 � t � 2xC y 3 ds

C
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24. , where 
and ,

25. , where has parametric equations ,
, ,

26. , where has parametric equations , ,
,

27–28 Use a graph of the vector field F and the curve C to guess
whether the line integral of F over C is positive, negative, or zero.
Then evaluate the line integral.

27. ,
is the arc of the circle traversed counter-

clockwise from (2, 0) to 

28. ,

is the parabola from to (1, 2)

29. (a) Evaluate the line integral , where
and is given by 

, .

; (b) Illustrate part (a) by using a graphing calculator or com-
puter to graph and the vectors from the vector field 
corresponding to , , and 1 (as in Figure 13).

30. (a) Evaluate the line integral , where
and is given by

, .

; (b) Illustrate part (a) by using a computer to graph and 
the vectors from the vector field corresponding to 
and (as in Figure 13).

31. Find the exact value of , where is the curve with
parametric equations , , ,

.

32. (a) Find the work done by the force field 
on a particle that moves once around the circle 
oriented in the counterclockwise direction.

(b) Use a computer algebra system to graph the force field and
circle on the same screen. Use the graph to explain your
answer to part (a).

A thin wire is bent into the shape of a semicircle ,
. If the linear density is a constant , find the mass and

center of mass of the wire.

34. A thin wire has the shape of the first-quadrant part of the circle
with center the origin and radius . If the density function is

, find the mass and center of mass of the wire.

35. (a) Write the formulas similar to Equations 4 for the center of
mass of a thin wire in the shape of a space curve 
if the wire has density function .	�x, y, z�

C�x, y, z �

	�x, y� � kxy
a

kx 
 0
x 2 � y 2 � 433.

CAS

x 2 � y 2 � 4
F�x, y� � x 2 i � xy j

0 � t � 2�
z � e�ty � e�t sin 4 tx � e�t cos 4 t

CxC x 3y 2z dsCAS

�
1
2

t � �1
C

�1 � t � 1r�t� � 2t i � 3t j � t 2 k
CF�x, y, z� � x i � z j � y k

x
C
 F � dr

1�s2 t � 0
C

0 � t � 1r�t� � t 2 i � t 3 j
CF�x, y� � e x�1 i � xy j
x

C
 F � dr

��1, 2�y � 1 � x 2C

F�x, y� �
x

sx 2 � y 2 
 i �

y

sx 2 � y 2 
 j

�0, �2�
x 2 � y 2 � 4C

F�x, y� � �x � y� i � xy j

CAS

0 � t � 1z � e�t
y � t 2x � tCxC ze�xy ds

0 � t � 5z � t 4y � t 3
x � t 2CxC x sin�y � z� ds

0 � t � �r�t� � cos t i � sin t j � sin 5t k
F�x, y, z� � y sin z i � z sin x j � x sin y kxC F � drLet be the vector field shown in the figure.

(a) If is the vertical line segment from to ,
determine whether is positive, negative, or zero.

(b) If is the counterclockwise-oriented circle with radius 3
and center the origin, determine whether is posi-
tive, negative, or zero.

18. The figure shows a vector field and two curves and .
Are the line integrals of over and positive, negative, 
or zero? Explain.

19–22 Evaluate the line integral , where is given by the
vector function .

19. ,
,

20. ,
,

,
,

22. ,
,

23–26 Use a calculator or CAS to evaluate the line integral correct
to four decimal places.

23. , where and 
, 1 � t � 2r�t� � e t i � e�t2

 j
F�x, y� � xy i � sin y jxC F � dr

0 � t � �r�t� � t i � sin t j � cos t k
F�x, y, z� � z i � y j � x k

0 � t � 1r�t� � t 3 i � t 2 j � t k
F�x, y, z� � sin x i � cos y j � xz k21.

0 � t � 1r�t� � t 2 i � t 3 j � t 2 k
F�x, y, z� � �x � y� i � �y � z� j � z2 k

0 � t � 1r�t� � 11t 4 i � t 3 j
F�x, y� � xy i � 3y 2 j

r�t�
CxC F � dr

y

x

C¡

C™

C2C1F
C2C1F

y

x0
1

1

2 3

2

3

_3 _2 _1

_3

_2

_1

xC2
 F � dr

C2

xC1
 F � dr

��3, 3���3, �3�C1

F17.
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(b) Is this also true for a force field , where is a
constant and ?

46. The base of a circular fence with radius 10 m is given by
. The height of the fence at position

is given by the function , so
the height varies from 3 m to 5 m. Suppose that 1 L of paint
covers . Sketch the fence and determine how much paint
you will need if you paint both sides of the fence.

47. An object moves along the curve shown in the figure from
(1, 2) to (9, 8). The lengths of the vectors in the force field 
are measured in newtons by the scales on the axes. Estimate
the work done by on the object.

48. Experiments show that a steady current in a long wire pro-
duces a magnetic field that is tangent to any circle that lies in
the plane perpendicular to the wire and whose center is the axis
of the wire (as in the figure). Ampère’s Law relates the electric
current to its magnetic effects and states that

where is the net current that passes through any surface
bounded by a closed curve , and is a constant called the
permeability of free space. By taking to be a circle with
radius , show that the magnitude of the magnetic
field at a distance from the center of the wire is

B

I

B �
�0 I

2�r

r
B � � B �r

C
�0C

I

y
C
 B � dr � �0 I

B
I

0 1

1

y
(meters)

x
(meters)

C

C

F

F
C

100 m2

h�x, y� � 4 � 0.01�x 2 � y 2��x, y�
x � 10 cos t, y � 10 sin t

x � �x, y�
kF�x� � kx(b) Find the center of mass of a wire in the shape of the helix

, , , , if the density
is a constant .

36. Find the mass and center of mass of a wire in the shape of the
helix , , , , if the density at
any point is equal to the square of the distance from the origin.

37. If a wire with linear density lies along a plane curve 
its moments of inertia about the - and -axes are defined as

Find the moments of inertia for the wire in Example 3.

38. If a wire with linear density lies along a space curve
, its moments of inertia about the -, -, and -axes are

defined as

Find the moments of inertia for the wire in Exercise 35.

Find the work done by the force field 
in moving an object along an arch of the cycloid

, .

40. Find the work done by the force field 
on a particle that moves along the parabola from

to .

41. Find the work done by the force field
on a particle that moves

along the line segment from to .

42. The force exerted by an electric charge at the origin on a
charged particle at a point with position vector

is where is a constant. (See
Example 5 in Section 16.1.) Find the work done as the particle
moves along a straight line from to .

A 160-lb man carries a 25-lb can of paint up a helical staircase
that encircles a silo with a radius of 20 ft. If the silo is 90 ft
high and the man makes exactly three complete revolutions,
how much work is done by the man against gravity in climbing
to the top?

44. Suppose there is a hole in the can of paint in Exercise 43 and
9 lb of paint leaks steadily out of the can during the man’s
ascent. How much work is done?

45. (a) Show that a constant force field does zero work on a 
particle that moves once uniformly around the circle

.x 2 � y 2 � 1

43.

�2, 1, 5��2, 0, 0�

KF�r� � Kr�� r �3r � �x, y, z �
�x, y, z�

�3, 4, 2��1, 0, 0�
F�x, y, z� � � y � z, x � z, x � y�

�2, 4���1, 1�
y � x 2

F�x, y� � x sin y i � y j

0 � t � 2�r�t� � �t � sin t� i � �1 � cos t� j

F�x, y� � x i � � y � 2� j39.

 Iz � y
C
 �x 2 � y 2 �	�x, y, z� ds

 Iy � y
C
 �x 2 � z2 �	�x, y, z� ds

 Ix � y
C
 � y 2 � z2 �	�x, y, z� ds

zyxC
	�x, y, z�

Iy � y
C
 x 2	�x, y� dsIx � y

C
 y 2	�x, y� ds

yx
C,	�x, y�

0 � t � 2�z � sin ty � cos tx � t

k
0 � t � 2�z � 3ty � 2 cos tx � 2 sin t



which says that the work done by the force field along is equal to the change in kinetic
energy at the endpoints of .

Now let’s further assume that is a conservative force field; that is, we can write
. In physics, the potential energy of an object at the point is defined as

, so we have . Then by Theorem 2 we have

Comparing this equation with Equation 16, we see that

which says that if an object moves from one point to another point under the influence
of a conservative force field, then the sum of its potential energy and its kinetic energy
remains constant. This is called the Law of Conservation of Energy and it is the reason
the vector field is called conservative.

BA

P�A� � K�A� � P�B� � K�B�

� P�A� � P�B�� �	P�r�b�� � P�r�a��
 W � y
C
 F � dr � �y

C
 �P � dr

F � �∇PP�x, y, z� � �f �x, y, z�
�x, y, z�F � ∇ f

F
C

C
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5.

6.

8.

9.

10.

The figure shows the vector field and
three curves that start at (1, 2) and end at (3, 2).
(a) Explain why has the same value for all three

curves.
(b) What is this common value?

y

x0 3

3

2

1

21

xC F � dr

F�x, y� � �2xy, x 2 �11.

F�x, y� � �xy cosh xy � sinh xy� i � �x 2 cosh xy � j

F�x, y� � �ln y � 2xy 3� i � �3x 2y 2 � x�y� j

F�x, y� � �xy cos xy � sin xy� i � �x 2 cos xy � j

F�x, y� � �ye x � sin y� i � �e x � x cos y� j7.

F�x, y� � �3x 2 � 2y 2� i � �4xy � 3� j

F�x, y� � e x sin y i � e x cos y j1. The figure shows a curve and a contour map of a function 
whose gradient is continuous. Find .

2. A table of values of a function with continuous gradient is
given. Find , where has parametric equations

3–10 Determine whether or not is a conservative vector field. 
If it is, find a function such that .

3.

4. F�x, y� � e x cos y i � e x sin y j

F�x, y� � �2x � 3y� i � ��3x � 4y � 8� j

F � � ff
F

1

3

8

6

5

2

4

7

9

x
y

0

1

2

0 1 2

x � t 2 � 1    y � t 3 � t    0 � t � 1

CxC � f � dr
f

y

x0

10

20

30
40
50
60

C

x
C
 � f � dr

fC
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26. Let , where . Find curves 
and that are not closed and satisfy the equation.

(a) (b)

Show that if the vector field is conser-
vative and , , have continuous first-order partial deriva-
tives, then

28. Use Exercise 27 to show that the line integral
is not independent of path.

29–32 Determine whether or not the given set is (a) open,
(b) connected, and (c) simply-connected.

30

31.

32.

Let .

(a) Show that .

(b) Show that is not independent of path. 
[Hint: Compute and , where 
and are the upper and lower halves of the circle

from to .] Does this contradict
Theorem 6?

34. (a) Suppose that is an inverse square force field, that is,

for some constant , where . Find the
work done by in moving an object from a point 
along a path to a point in terms of the distances and

from these points to the origin.
(b) An example of an inverse square field is the gravita-

tional field discussed in Example 4
in Section 16.1. Use part (a) to find the work done by 
the gravitational field when the earth moves from aph-
elion (at a maximum distance of km from 
the sun) to perihelion (at a minimum distance of

km). (Use the values kg,
kg, and 

(c) Another example of an inverse square field is the electric
force field discussed in Example 5 in
Section 16.1. Suppose that an electron with a charge of

C is located at the origin. A positive unit
charge is positioned a distance m from the electron
and moves to a position half that distance from the elec-
tron. Use part (a) to find the work done by the electric
force field. (Use the value .) � 8.985 � 10 9

10�12
�1.6 � 10�19

F � qQr�� r �3

N�m2�kg2.�G � 6.67 � 10�11M � 1.99 � 1030
m � 5.97 � 10241.47 � 108

1.52 � 108

F � ��mMG �r�� r �3

d2

d1P2

P1F
r � x i � y j � z kc

F�r� �
cr

� r �3

F

��1, 0��1, 0�x 2 � y 2 � 1
C2

C1x C2
 F � drx C1

 F � dr
xC F � dr

�P��y � �Q��x

F�x, y� �
�y i � x j

x 2 � y 2
33.

��x, y� � x 2 � y 2 � 1 or 4 � x 2 � y 2 � 9�

��x, y� � 1 � x 2 � y 2 � 4�

��x, y� � x � 0���x, y� � x � 0, y � 0�29.

xC y dx � x dy � xyz dz

�Q

�z
�

�R

�y

�P

�z
�

�R

�x

�P

�y
�

�Q

�x

RQP
F � P i � Q j � R k27.

y
C2

 F � dr � 1y
C1

 F � dr � 0

C2

C1f �x, y� � sin�x � 2y�F � � f12–18 (a) Find a function such that and (b) use 
part (a) to evaluate along the given curve .

12. ,
is the arc of the parabola from to 

13. ,

: ,

14. ,

: ,

,
is the line segment from to 

16. ,
: , , ,

17. ,
: ,

18. ,
: ,

19–20 Show that the line integral is independent of path and
evaluate the integral.

19. ,

is any path from to 

20. ,

is any path from to 

21–22 Find the work done by the force field in moving an
object from to .

21. ; ,

22. ; ,

23–24 Is the vector field shown in the figure conservative?
Explain.

24.

25. If , use a plot to guess
whether is conservative. Then determine whether your
guess is correct.

F
F�x, y� � sin y i � �1 � x cos y� jCAS

y

x

y

x

23.

Q�2, 0�P�0, 1�F�x, y� � e�y i � xe�y j

Q�2, 4�P�1, 1�F�x, y� � 2y 3�2 i � 3xsy  j

QP
F

�1, 2��0, 1�C

xC �1 � ye�x � dx � e�x dy

�2, ��4��1, 0�C

xC tan y dx � x sec2 y dy

0 � t � 1r�t� � t i � t 2 j � t 3 kC
F�x, y, z� � e y i � xe y j � �z � 1�ez k

0 � t � �r�t� � t 2 i � sin t j � t kC
F�x, y, z� � y 2 cos z i � 2xy cos z j � xy 2 sin z k

0 � t � 1z � 2t � 1y � t � 1x � t 2C
F�x, y, z� � �2xz � y2� i � 2xy j � �x 2 � 3z2� k

�4, 6, 3��1, 0, �2�C
F�x, y, z� � yz i � xz j � �xy � 2z� k15.

0 � t � 1r�t� � t 2 i � 2t jC

F�x, y� �
y 2

1 � x 2
 i � 2y arctan x j

0 � t � 1r�t� � � t � sin 1
2� t, t � cos 1

2� t�C

F�x, y� � xy 2 i � x 2y j

�2, 8���1, 2�y � 2x 2C
F�x, y� � x 2 i � y 2 j

Cx
C
 F � dr

F � ∇ ff

1054 | | | | CHAPTER 16 VECTOR CALCULUS



We now easily compute this last integral using the parametrization given by
, . Thus

M

We end this section by using Green’s Theorem to discuss a result that was stated in the
preceding section.

SKETCH OF PROOF OF THEOREM 16.3.6 We’re assuming that is a vector field on
an open simply-connected region , that and have continuous first-order partial
derivatives, and that

If is any simple closed path in and is the region that encloses, then Green’s
Theorem gives

A curve that is not simple crosses itself at one or more points and can be broken up into
a number of simple curves. We have shown that the line integrals of around these 
simple curves are all 0 and, adding these integrals, we see that for any
closed curve . Therefore is independent of path in by Theorem 16.3.3. It
follows that is a conservative vector field. MF

Dx
C
 F � drC

x
C
 F � dr � 0

F

�y
C
 F � dr � �y

C
 P dx � Q dy � yy

R

 �Q

�x
�

�P

�y � dA � yy
R

 0 dA � 0

CRDC

 throughout D
�P

�y
�

�Q

�x

QPD
F � P i � Q j

� y2�

0
 dt � 2�� y2�

0
 
��a sin t���a sin t� � �a cos t��a cos t�

a 2 cos2t � a 2 sin2t
 dt

 y
C
 F � dr � y

C�
 F � dr � y2�

0
 F�r�t�� � r��t� dt

0 � t � 2�r�t� � a cos t i � a sin t j
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6. ,
is the rectangle with vertices , , , and 

,
is the boundary of the region enclosed by the parabolas

and 

8. ,
is the boundary of the region between the circles

and 

, is the circle 

10. , is the ellipse 

11–14 Use Green’s Theorem to evaluate . (Check the 
orientation of the curve before applying the theorem.)

11. ,
consists of the arc of the curve from to 

and the line segment from to �0, 0���, 0�
��, 0��0, 0�y � sin xC

F�x, y� � �sx � y 3, x 2 � sy �

xC F � dr

x 2 � xy � y 2 � 1CxC sin y dx � x cos y dy

x 2 � y 2 � 4CxC y 3 dx � x 3 dy9.

x 2 � y 2 � 4x 2 � y 2 � 1
C
xC xe�2x dx � �x 4 � 2x 2y 2� dy

x � y 2y � x 2
C
xC (y � esx ) dx � �2x � cos y 2 � dy7.

�0, 2��5, 2��5, 0��0, 0�C
xC cos y dx � x 2 sin y dy1–4 Evaluate the line integral by two methods: (a) directly and 

(b) using Green’s Theorem.

1. ,
is the circle with center the origin and radius 2

2. ,
is the rectangle with vertices , , , and 

,
is the triangle with vertices , (1, 0), and (1, 2)

4. , consists of the line segments from 
to and from to and the parabola 
from to 

5–10 Use Green’s Theorem to evaluate the line integral along the
given positively oriented curve.

5. ,
is the triangle with vertices , , and �2, 4��2, 2��0, 0�C
xC xy 2 dx � 2x 2y dy

�0, 1��1, 0�
y � 1 � x 2�1, 0��0, 0��0, 0�

�0, 1�C�xC x  dx � y dy

�0, 0�C
�xC xy dx � x 2 y 3 dy3.

�0, 1��3, 1��3, 0��0, 0�C
�xC xy dx � x 2 dy

C
�xC �x � y� dx � �x � y� dy
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(c) Find the area of the pentagon with vertices , ,
, , and .

22. Let be a region bounded by a simple closed path in the 
-plane. Use Green’s Theorem to prove that the coordinates

of the centroid of are

where is the area of .

23. Use Exercise 22 to find the centroid of a quarter-circular
region of radius .

24. Use Exercise 22 to find the centroid of the triangle with 
vertices , , and , where and .

25. A plane lamina with constant density occupies a
region in the -plane bounded by a simple closed path .
Show that its moments of inertia about the axes are

26. Use Exercise 25 to find the moment of inertia of a circular
disk of radius with constant density about a diameter.
(Compare with Example 4 in Section 15.5.)

If is the vector field of Example 5, show that 
for every simple closed path that does not pass through or
enclose the origin.

28. Complete the proof of the special case of Green’s Theorem
by proving Equation 3.

29. Use Green’s Theorem to prove the change of variables 
formula for a double integral (Formula 15.9.9) for the case
where :

Here is the region in the -plane that corresponds to the
region in the -plane under the transformation given by

, .
[Hint: Note that the left side is and apply the first part

of Equation 5. Convert the line integral over to a line inte-
gral over and apply Green’s Theorem in the -plane.]uv�S

�R
A�R�

y � h�u, v�x � t�u, v�
uvS

xyR

yy
R

 dx dy � yy
S

 � ��x, y�
��u, v� �  du dv

f �x, y� � 1

xC F � dr � 0F27.

	a

Iy �
	

3
 �y

C
 x 3 dyIx � �

	

3
 �y

C
 y 3 dx

Cxy
	�x, y� � 	

b � 0a � 0�a, b��a, 0��0, 0�

a

DA

y � �
1

2A
 �y

C
 y 2 dxx �

1

2A
 �y

C
 x 2 dy

D�x, y �
xy

CD

��1, 1��0, 2��1, 3�
�2, 1��0, 0�12. ,

is the triangle from to to to 

13. ,
is the circle oriented clockwise

14. , is the circle
oriented counterclockwise

15–16 Verify Green’s Theorem by using a computer algebra sys-
tem to evaluate both the line integral and the double integral.

15. , ,
consists of the line segment from to followed

by the arc of the parabola from to 

16. , ,
is the ellipse 

Use Green’s Theorem to find the work done by the force
in moving a particle from the 

origin along the -axis to , then along the line segment 
to , and then back to the origin along the -axis.

18. A particle starts at the point , moves along the -axis
to , and then along the semicircle to the
starting point. Use Green’s Theorem to find the work done on
this particle by the force field .

19. Use one of the formulas in (5) to find the area under one arch
of the cycloid .

; 20. If a circle with radius 1 rolls along the outside of the 
circle , a fixed point on traces out a 
curve called an epicycloid, with parametric equations

, . Graph the epi-
cycloid and use (5) to find the area it encloses.

(a) If is the line segment connecting the point to the
point , show that 

(b) If the vertices of a polygon, in counterclockwise order,
are , , show that the area of
the polygon is

 A � � �xn�1 yn � xn yn�1 � � �xn y1 � x1 yn �

 A � 1

2 	�x1 y2 � x2 y1 � � �x2 y3 � x3 y2 � � � � �

�xn , yn ��x2, y2 �, . . . , �x1, y1 �

y
C
 x dy � y dx � x1 y2 � x2 y1

�x2, y2�
�x1, y1�C21.

y � 5 sin t � sin 5tx � 5 cos t � cos 5t

CPx 2 � y 2 � 16
C

x � t � sin t, y � 1 � cos t

F�x, y� � �x, x 3 � 3xy 2 �

y � s4 � x 2 �2, 0�
x��2, 0�

y�0, 1�
�1, 0�x

F�x, y� � x�x � y� i � xy 2 j
17.

4x 2 � y 2 � 4C
Q�x, y� � x 3y 8P�x, y� � 2x � x 3y 5

��1, 1��1, 1�y � 2 � x 2
�1, 1���1, 1�C

Q�x, y� � x 2e yP�x, y� � y 2e x

CAS

�x � 2�2 � �y � 3�2 � 1
CF�x, y� � � y � ln�x 2 � y 2�, 2 tan�1�y�x��

x 2 � y 2 � 25C
F�x, y� � �e x � x 2 y, e y � xy 2 �

�0, 0��2, 0��2, 6��0, 0�C
F�x, y� � � y 2 cos x, x 2 � 2y sin x�
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CURL AND DIVERGENCE

In this section we define two operations that can be performed on vector fields and that
play a basic role in the applications of vector calculus to fluid flow and electricity and mag-
netism. Each operation resembles differentiation, but one produces a vector field whereas
the other produces a scalar field.

16.5
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13–18 Determine whether or not the vector field is conservative. 
If it is conservative, find a function such that .

13.

14.

16.

17.

18.

Is there a vector field on such that
? Explain.

20. Is there a vector field on such that
? Explain.

Show that any vector field of the form

where , , are differentiable functions, is irrotational.

22. Show that any vector field of the form

is incompressible.

23–29 Prove the identity, assuming that the appropriate partial
derivatives exist and are continuous. If is a scalar field and , 
are vector fields, then , , and are defined by

23. div

24. curl

25. div

26. curl

27. div

28. div

29.

30–32 Let and .

30. Verify each identity.
(a) (b)
(c) � 2r 3 � 12r

� � �rr� � 4r� � r � 3

r � � r �r � x i � y j � z k

curl�curl F� � grad�div F� � � 2F

�� f � �t� � 0

�F � G� � G � curl F � F � curl G

curl F � �� f � � F� f F� � f

div F � F � � f� f F� � f

�F � G� � curl F � curl G

�F � G� � div F � div G

 �F � G��x, y, z� � F�x, y, z� � G�x, y, z�

 �F � G��x, y, z� � F�x, y, z� � G�x, y, z�

 � f F��x, y, z� � f �x, y, z� F�x, y, z�

F � GF � Gf F
GFf

F�x, y, z� � f �y, z� i � t�x, z� j � h�x, y� k

htf

F�x, y, z� � f �x� i � t�y� j � h�z� k

21.

curl G � �xyz, �y 2z, yz2 �
� 3G

curl G � �x sin y, cos y, z � xy �
� 3G19.

F�x, y, z� � y cos xy i � x cos xy j � sin z k

F�x, y, z� � ye�x i � e�x j � 2z k

F�x, y, z� � e z i � j � xe z k

F�x, y, z� � 2xy i � �x 2 � 2yz� j � y 2 k15.

F�x, y, z� � xyz 2 i � x 2yz2 j � x 2y 2z k

F�x, y, z� � y 2z3 i � 2xyz3 j � 3xy 2z2 k

F � ∇ ff
1–8 Find (a) the curl and (b) the divergence of the vector field.

2.

3.

4.

5.

6.

7.

8.

9–11 The vector field F is shown in the xy-plane and looks the
same in all other horizontal planes. (In other words, F is indepen-
dent of and its -component is 0.)
(a) Is div F positive, negative, or zero? Explain.
(b) Determine whether curl . If not, in which direction does

curl F point?

9. 10.

12. Let be a scalar field and a vector field. State whether 
each expression is meaningful. If not, explain why. If so, state
whether it is a scalar field or a vector field.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) ( j)

(k) ( l) div�curl�grad f ���grad f � � �div F�
div�div F�curl�curl F�
grad�div f �div�grad f �
grad�div F�grad F

curl�grad f �div F

grad fcurl f

Ff

y

x0

11.

y

x0

y

x0

F � 0

zz

F�x, y, z� � �e x, e xy, e xyz �

F�x, y, z� � � ln x, ln�xy�, ln�xyz��

F�x, y, z� � e xy sin z j � y tan�1�x�z� k

F�x, y, z� �
1

sx 2 � y 2 � z2 
 �x i � y j � z k�

F�x, y, z� � cos xz j � sin xy k

F�x, y, z� � i � �x � yz� j � (xy � sz ) k

F�x, y, z� � x 2 yz i � xy 2z j � xyz 2 k

F�x, y, z� � xyz i � x 2y k1.
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38. Maxwell’s equations relating the electric field and magnetic
field as they vary with time in a region containing no charge
and no current can be stated as follows:

where is the speed of light. Use these equations to prove the
following:

(a)

(b)

(c) [Hint: Use Exercise 29.]

(d)

39. We have seen that all vector fields of the form 
satisfy the equation and that all vector fields of the
form satisfy the equation (assuming 
continuity of the appropriate partial derivatives). This suggests
the question: Are there any equations that all functions of the
form must satisfy? Show that the answer to this
question is “No” by proving that every continuous function 
on is the divergence of some vector field. [Hint: Let

,where t�x, y, z� � xx0  f �t, y, z� dt.]G�x, y, z� � �t�x, y, z�, 0, 0 �
� 3

f
f � div G

div F � 0F � curl G
curl F � 0

F � �t

� 2H �
1

c 2  
�2 H
�t 2

� 2E �
1

c 2  
�2 E
�t 2

� � �� � H� � �
1

c 2  
�2 H
�t 2

� � �� � E� � �
1

c 2  
�2 E
�t 2

c

 curl H �
1

c
 
�E
�t

 curl E � �
1

c
 
�H
�t

 div H � 0 div E � 0

H
E

0

¨

P

d
B

w

v

z

y

x

Verify each identity.
(a) (b)
(c) (d)

32. If , find div . Is there a value of for which 
div ?

33. Use Green’s Theorem in the form of Equation 13 to prove
Green’s first identity:

where and satisfy the hypotheses of Green’s Theorem 
and the appropriate partial derivatives of and exist and are
continuous. (The quantity occurs in the line inte-
gral. This is the directional derivative in the direction of the
normal vector and is called the normal derivative of .)

34. Use Green’s first identity (Exercise 33) to prove Green’s 
second identity:

where and satisfy the hypotheses of Green’s Theorem 
and the appropriate partial derivatives of and exist and are
continuous.

35. Recall from Section 14.3 that a function is called harmonic
on if it satisfies Laplace’s equation, that is, on .
Use Green’s first identity (with the same hypotheses as in Exer-
cise 33) to show that if is harmonic on then .
Here is the normal derivative of defined in Exercise 33.

36. Use Green’s first identity to show that if is harmonic 
on and if on the boundary curve then

. (Assume the same hypotheses as in 
Exercise 33.)

37. This exercise demonstrates a connection between the curl 
vector and rotations. Let be a rigid body rotating about the 
-axis. The rotation can be described by the vector ,

where is the angular speed of , that is, the tangential speed
of any point in divided by the distance from the axis of
rotation. Let be the position vector of .
(a) By considering the angle in the figure, show that the

velocity field of is given by .
(b) Show that .
(c) Show that .curl v � 2w

v � ��y i � � x j
v � w � rB

�
Pr � �x, y, z �

dBP
B�

w � �kz
B

xxD � �f �2
 dA � 0

C,f �x, y� � 0D,
f

tDn t
x�

C Dn t ds � 0D,t

D�2t � 0D
t

tf
CD

yy
D

 � f �2t � t�2f � dA � �y
C
 � f �t � t� f � � n ds

tn

�t � n � Dn t
tf

CD

yy
D

 f �2t dA � �y
C
 f ��t� � n ds � yy

D

 � f � �t dA

F � 0
pFF � r�r p

� ln r � r�r 2��1�r� � �r�r 3

� � r � 0�r � r�r

31.


