
We have seen that an interesting space curve, the helix, occurs in the model of DNA.
Another notable example of a space curve in science is the trajectory of a positively
charged particle in orthogonally oriented electric and magnetic fields E and B. Depending
on the initial velocity given the particle at the origin, the path of the particle is either a
space curve whose projection on the horizontal plane is the cycloid we studied in Section
10.1 [Figure 12(a)] or a curve whose projection is the trochoid investigated in Exercise 40
in Section 10.1 [Figure 12(b)].

For further details concerning the physics involved and animations of the trajectories of
the particles, see the following websites:

N www.phy.ntnu.edu.tw/java/emField/emField.html

N www.physics.ucla.edu/plasma-exp/Beam/

(a)  r(t) = kt-sin t, 1-cos t, tl

B

E

t

(b)  r(t) = kt-    sin t, 1-    cos t, tl3
2

3
2

B

E

t
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N Some computer algebra systems provide us
with a clearer picture of a space curve by enclos-
ing it in a tube. Such a plot enables us to see
whether one part of a curve passes in front of or
behind another part of the curve. For example,
Figure 13 shows the curve of Figure 12(b) as ren-
dered by the tubeplot command in Maple.

9. 10.

11. 12.

14.

15–18 Find a vector equation and parametric equations for the line
segment that joins to .

15. ,

16. ,

17. ,

18. ,

19–24 Match the parametric equations with the graphs 
(labeled I–VI). Give reasons for your choices.

, ,

20. , , z � e�ty � t 2x � t

z � sin 4ty � tx � cos 4t19.

Q�6, �1, 2�P��2, 4, 0�

Q�4, 1, 7�P�1, �1, 2�

Q�2, 3, 1�P�1, 0, 1�

Q�1, 2, 3�P�0, 0, 0�

QP

r�t� � cos t i � cos t j � sin t k

r�t� � t 2 i � t 4 j � t 6 k13.

r�t� � t 2 i � t j � 2kr�t� � �1, cos t, 2 sin t�

r�t� � �1 � t, 3t, �t�r�t� � � t, cos 2t, sin 2t �1–2 Find the domain of the vector function.

1.

2.

3–6 Find the limit.

3.

4.

5.

6.

7–14 Sketch the curve with the given vector equation. Indicate
with an arrow the direction in which increases.

7. 8. r�t� � � t 3, t 2 �r�t� � �sin t, t�

t

lim
t l �

 �arctan t, e�2t, 
ln t

t �
lim
t l 0

 �e�3 t i �
t 2

sin2t
j � cos 2t k	

lim
t l 0

 � e t � 1

t
, 
s1 � t � 1

t
, 

3

1 � t�
lim
t l 0�

 �cos t, sin t, t ln t�

r�t� �
t � 2

t � 2
 i � sin t j � ln�9 � t2� k 

r�t� � �s4 � t 2 , e�3 t, ln�t � 1� �
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FIGURE 12
Motion of a charged particle in 
orthogonally oriented electric 
and magnetic fields

FIGURE 13



; 33. Graph the curve with parametric equations
, ,

. Explain the appearance of the graph by 
showing that it lies on a cone.

; 34. Graph the curve with parametric equations

Explain the appearance of the graph by showing that it lies on
a sphere.

35. Show that the curve with parametric equations ,
, passes through the points (1, 4, 0)

and (9, �8, 28) but not through the point (4, 7, �6).

36–38 Find a vector function that represents the curve of
intersection of the two surfaces.

36. The cylinder and the surface 

The cone and the plane 

38. The paraboloid and the parabolic 
cylinder 

; Try to sketch by hand the curve of intersection of the circular
cylinder and the parabolic cylinder . 
Then find parametric equations for this curve and use these
equations and a computer to graph the curve.

; 40. Try to sketch by hand the curve of intersection of the 
parabolic cylinder and the top half of the ellipsoid

. Then find parametric equations for 
this curve and use these equations and a computer to graph 
the curve.

41. If two objects travel through space along two different curves,
it’s often important to know whether they will collide. (Will a
missile hit its moving target? Will two aircraft collide?) The
curves might intersect, but we need to know whether the
objects are in the same position at the same time. Suppose the
trajectories of two particles are given by the vector functions

for .  Do the particles collide?

42. Two particles travel along the space curves

Do the particles collide? Do their paths intersect?

43. Suppose and are vector functions that possess limits as
and let be a constant. Prove the following properties

of limits.

(a) lim
t l a

 
u�t� � v�t�� � lim
t l a

 u�t� � lim
t l a

 v�t�

ct l a
vu

r2 �t� � �1 � 2t, 1 � 6t, 1 � 14t�r1 �t� � � t, t 2, t 3 �

t � 0

r2 �t� � �4t � 3, t 2, 5t � 6�r1 �t� � � t 2, 7t � 12, t 2 �

x 2 � 4y 2 � 4z2 � 16
y � x 2

z � x 2x 2 � y 2 � 4
39.

y � x 2
z � 4x 2 � y 2

z � 1 � yz � sx 2 � y 2 37.

z � xyx 2 � y 2 � 4

z � 1 � t 3y � 1 � 3t
x � t 2

 z � 0.5 cos 10t

 y � s1 � 0.25 cos 2 10t  sin t

 x � s1 � 0.25 cos 2 10t  cos t

z � 1 � cos 16t
y � �1 � cos 16t� sin tx � �1 � cos 16t� cos t

, ,

22. , ,

23. , ,

24. , ,

Show that the curve with parametric equations ,
, lies on the cone , and use this

fact to help sketch the curve.

26. Show that the curve with parametric equations ,
, is the curve of intersection of the

surfaces and . Use this fact to help sketch
the curve.

27. At what points does the curve inter-
sect the paraboloid ?

28. At what points does the helix intersect
the sphere ?

; 29–32 Use a computer to graph the curve with the given vector
equation. Make sure you choose a parameter domain and view-
points that reveal the true nature of the curve.

29.

30.

31.

32. r�t� � � t, e t, cos t�

r�t� � � t, t sin t, t cos t�

r�t� � � t 2, ln t, t�

r�t� � �cos t sin 2t, sin t sin 2t, cos 2t�

x 2 � y 2 � z2 � 5
r�t� � �sin t, cos t, t �

z � x 2 � y 2
r�t� � t i � �2t � t 2� k

x 2 � y 2 � 1z � x 2
z � sin2ty � cos t

x � sin t

z2 � x 2 � y 2z � ty � t sin t
x � t cos t25.

III IV

I II

V VI z

x y

z

x
y

z

x
y

z

x y

z

x y

z

x y

z � ln ty � sin tx � cos t

z � sin 5ty � sin tx � cos t

z � e�ty � e�t sin 10tx � e�t cos 10t

z � t 2y � 1��1 � t 2 �x � t21.
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that the projection of the curve onto the -plane has polar
coordinates and , so varies between 1
and 3. Then show that has maximum and minimum values
when the projection is halfway between and .

; When you have finished your sketch, use a computer to draw
the curve with viewpoint directly above and compare with your
sketch. Then use the computer to draw the curve from several
other viewpoints. You can get a better impression of the curve
if you plot a tube with radius 0.2 around the curve. (Use the
tubeplot command in Maple.)

45. Show that if and only if for every 
there is a number such that 

if then 
 r�t� � b 
 � �0 � 
 t � a 
 � �

� 	 0
� 	 0lim tl a r�t� � b

r � 3r � 1
z

r
 � tr � 2 � cos 1.5t
xy(b)

(c)

(d)

44. The view of the trefoil knot shown in Figure 8 is accurate, but
it doesn’t reveal the whole story. Use the parametric equations

to sketch the curve by hand as viewed from above, with gaps
indicating where the curve passes over itself. Start by showing 

 z � sin 1.5t

 y � �2 � cos 1.5t� sin t

 x � �2 � cos 1.5t� cos t

lim
t l a

 
u�t� � v�t�� � lim
t l a

 u�t� � lim
t l a

 v�t�

lim
t l a

 
u�t� � v�t�� � lim
t l a

 u�t� � lim
t l a

 v�t�

lim
t l a

 cu�t� � c lim
t l a

 u�t�
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DERIVATIVES AND INTEGRALS OF VECTOR FUNCTIONS

Later in this chapter we are going to use vector functions to describe the motion of plan-
ets and other objects through space. Here we prepare the way by developing the calculus
of vector functions.

DERIVATIVES

The derivative of a vector function is defined in much the same way as for real-
valued functions:

if this limit exists. The geometric significance of this definition is shown in Figure 1. If the
points and have position vectors and , then PQ

l
represents the vector

, which can therefore be regarded as a secant vector. If , the scalar
multiple has the same direction as . As , it
appears that this vector approaches a vector that lies on the tangent line. For this reason,
the vector is called the tangent vector to the curve defined by at the point , pro-
vided that exists and . The tangent line to at is defined to be the line
through parallel to the tangent vector . We will also have occasion to consider the
unit tangent vector, which is

The following theorem gives us a convenient method for computing the derivative of a
vector function : just differentiate each component of .

THEOREM If , where , , and
are differentiable functions, then

r��t� � � f ��t�, t��t�, h��t�� � f ��t� i � t��t� j � h��t� k

h
tfr�t� � � f �t�, t�t�, h�t�� � f �t� i � t�t� j � h�t� k2

rr

T�t� �
r��t�


 r��t� 


r��t�P
PCr��t� � 0r��t�

Prr��t�

h l 0r�t � h� � r�t��1�h��r�t � h� � r�t��
h 	 0r�t � h� � r�t�

r�t � h�r�t�QP

dr
dt

� r��t� � lim 
hl 0

 
r�t � h� � r�t�

h
1

rr�

13.2

(b) The tangent vector

(a) The secant vector

0

P

C

Q

r(t+h)-r(t)

r(t)
r(t+h)

r(t+h)-r(t)

h

0

C

P
Q

r(t+h)
r(t)

rª(t)

y

z

x

x

z

y

FIGURE 1

Visual 13.2 shows an animation of 
Figure 1.
TEC



This means that we can evaluate an integral of a vector function by integrating each com-
ponent function.

We can extend the Fundamental Theorem of Calculus to continuous vector functions as
follows:

where is an antiderivative of , that is, . We use the notation for
indefinite integrals (antiderivatives).

EXAMPLE 5 If , then

where is a vector constant of integration, and

My
�2

0
 r�t� dt � [2 sin t i � cos t j � t 2 k]0


�2
� 2 i � j �


 2

4
 k

C

 � 2 sin t i � cos t j � t 2 k � C

 y r�t� dt � �y 2 cos t dt	 i � �y sin t dt	 j � �y 2t dt	 k

r�t� � 2 cos t i � sin t j � 2t k

x r�t� dtR��t� � r�t�rR

yb

a
 r�t� dt � R�t�]b

a � R�b� � R�a�

828 | | | | CHAPTER 13 VECTOR FUNCTIONS

(b) Draw the vector starting at (1, 1) and compare it with
the vector

Explain why these vectors are so close to each other in
length and direction.

3–8
(a) Sketch the plane curve with the given vector equation.
(b) Find .
(c) Sketch the position vector and the tangent vector for

the given value of .

,

4. ,

5. ,

6. ,

7. ,

8. ,

9–16 Find the derivative of the vector function.

9. r�t� � � t sin t, t 2, t cos 2t �

t � 
�6r�t� � �1 � cos t� i � �2 � sin t� j

t � 0r�t� � e t i � e 3 t j

t � 0r�t� � e t i � e �t j

t � 
�4r�t� � sin t i � 2 cos t j

t � 1r�t� � �1 � t, st �
t � �1r�t� � � t � 2, t 2 � 1 �3.

t
r��t�r�t�

r��t�

r�1.1� � r�1�
0.1

r��1�The figure shows a curve given by a vector function .
(a) Draw the vectors and .
(b) Draw the vectors

(c) Write expressions for and the unit tangent vector T(4).
(d) Draw the vector T(4).

2. (a) Make a large sketch of the curve described by the vector
function , , and draw the vectors
r(1), r(1.1), and r(1.1) � r(1).

0 � t � 2r�t� � � t 2, t�

x0 1

1

y
RC

Q

P

r(4.5)

r(4.2)

r(4)

r��4�

r�4.2� � r�4�
0.2

and
r�4.5� � r�4�

0.5

r�4.2� � r�4�r�4.5� � r�4�
r�t�C1.
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33–38 Evaluate the integral.

33.

34.

35.

36.

37.

38.

39. Find if and .

40. Find if and .

41. Prove Formula 1 of Theorem 3.

42. Prove Formula 3 of Theorem 3.

43. Prove Formula 5 of Theorem 3.

44. Prove Formula 6 of Theorem 3.

45. If and , use 
Formula 4 of Theorem 3 to find 

46. If and are the vector functions in Exercise 45, use
Formula 5 of Theorem 3 to find 

47. Show that if is a vector function such that exists, then

48. Find an expression for .

If , show that .

[Hint: ]

50. If a curve has the property that the position vector is
always perpendicular to the tangent vector , show that 
the curve lies on a sphere with center the origin.

51. If , show that

u��t� � r�t� � 
r��t� � r��t��

u�t� � r�t� � 
r��t� � r��t��

r��t�
r�t�


 r�t� 
2 � r�t� � r�t�

d

dt
 
 r�t� 
 �

1


 r�t� 
  r�t� � r��t�r�t� � 049.

d

dt
 
u�t� � �v�t� � w�t���

d

dt
 
r�t� � r��t�� � r�t� � r��t�

r�r

d

dt

u�t� � v�t��

vu

d

dt

u�t� � v�t��

v�t� � � t, cos t, sin t�u�t� � �sin t, cos t, t �

r�0� � i � j � kr��t� � t i � e t j � te t kr�t�

r�1� � i � jr��t� � 2t i � 3t 2 j � st  kr�t�

y �cos 
 t i � sin 
 t j � t k� dt

y �e t i � 2t j � ln t k� dt

y2

1
 (t 2 i � tst � 1 j � t sin 
 t k) dt

y
�2

0
 �3 sin 2t cos t i � 3 sin t cos 2t j � 2 sin t cos t k� dt

y1

0
 � 4

1 � t 2  j �
2t

1 � t 2  k	 dt

y1

0
 �16t3 i � 9t2 j � 25t 4 k� dt

10.

11.

12.

13.

14.

16.

17–20 Find the unit tangent vector at the point with the
given value of the parameter .

17. ,

18. ,

,

20. ,

21. If , find and 

22. If , find , , and 

23–26 Find parametric equations for the tangent line to the curve
with the given parametric equations at the specified point.

23. , , ;

24. , , ;

, , ;

26. , , ;

; 27–29 Find parametric equations for the tangent line to the 
curve with the given parametric equations at the specified point.
Illustrate by graphing both the curve and the tangent line on a
common screen.

27. , , ;

28. , , ;

29. , , ;

30. (a) Find the point of intersection of the tangent lines to the
curve at the points
where and .

; (b) Illustrate by graphing the curve and both tangent lines.

31. The curves and 
intersect at the origin. Find their angle of intersection correct
to the nearest degree.

32. At what point do the curves and
intersect? Find their angle of

intersection correct to the nearest degree.
r2�s� � �3 � s, s � 2, s 2 �

r1�t� � � t, 1 � t, 3 � t 2 �

r2�t� � �sin t, sin 2t, t �r1�t� � � t, t 2, t 3 �

t � 0.5t � 0
r�t� � �sin 
 t, 2 sin 
 t, cos 
 t�

��
, 
, 0�z � t sin ty � tx � t cos t

(s3 , 1, 2)z � 4 cos 2ty � 2 sin tx � 2 cos t

�0, 1, 0�z � 2t � t 2y � e�tx � t

�0, 2, 1�z � t 2y � 2st x � ln t

�1, 0, 1�z � e�ty � e�t sin tx � e�t cos t25.

�1, 0, 0�z � tet2

y � tetx � et

�3, 0, 2�z � t 3 � ty � t 3 � tx � 1 � 2st 

r��t� � r��t�.r��0�T�0�r�t� � �e 2 t, e�2 t, te 2 t�

r��t� � r��t�.r��t�, T�1�, r��t�, r�t� � � t, t 2, t 3 �

t � 
�4r�t� � 2 sin t i � 2 cos t j � tan t k

t � 0r�t� � cos t i � 3t j � 2 sin 2t k19.

t � 1r�t� � 4st i � t 2 j � t k

t � 0r�t� � � te�t, 2 arctan t, 2e t �

t
T�t�

r�t� � t a � �b � t c�

r�t� � a � t b � t 2 c15.

r�t� � at cos 3t i � b sin3t j � c cos 3t k

r�t� � et 2

i � j � ln�1 � 3t� k

r�t� � sin�1t i � s1 � t 2  j � k

r�t� � i � j � e 4 t k

r�t� � � tan t, sec t, 1�t 2 �
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EXAMPLE 8 Find and graph the osculating circle of the parabola at the origin.

SOLUTION From Example 5 the curvature of the parabola at the origin is . So the
radius of the osculating circle at the origin is and its center is . Its equation
is therefore

For the graph in Figure 9 we use parametric equations of this circle:

M

We summarize here the formulas for unit tangent, unit normal and binormal vectors,
and curvature.

� � � dT
ds � � 
 T��t� 



 r��t� 
 � 
 r��t� � r��t� 


 r��t� 
3

B�t� � T�t� � N�t�N�t� �
T��t�


 T��t� 
T�t� �
r��t�


 r��t� 


y � 1
2 �

1
2 sin tx � 1

2 cos t

x 2 � (y �
1
2 )2

� 1
4

(0, 12 )1�� � 1
2

��0� � 2

y � x 2
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y

x0

1
2

1

y=≈osculating
circle

FIGURE 9

Visual 13.3C shows how the oscu-
lating circle changes as a point moves along
a curve.

TEC

12. Find, correct to four decimal places, the length of the curve 
of intersection of the cylinder and the plane

.

13–14 Reparametrize the curve with respect to arc length mea-
sured from the point where in the direction of increasing .

13.

14.

15. Suppose you start at the point and move 5 units
along the curve , , in the positive
direction. Where are you now?

16. Reparametrize the curve

with respect to arc length measured from the point (1, 0) in
the direction of increasing . Express the reparametrization in
its simplest form. What can you conclude about the curve?

17–20
(a) Find the unit tangent and unit normal vectors and .
(b) Use Formula 9 to find the curvature.

r�t� � �2 sin t, 5t, 2 cos t �17.

N�t�T�t�

t

r�t� � � 2

t 2 � 1
� 1	 i �

2t

t 2 � 1
 j

z � 3 cos ty � 4tx � 3 sin t
�0, 0, 3�

r�t� � e 2 t cos 2t i � 2 j � e 2 t sin 2t k

r�t� � 2t i � �1 � 3t� j � �5 � 4t� k

tt � 0

x � y � z � 2
4x 2 � y 2 � 4

1–6 Find the length of the curve.

1. ,

2. ,

,

4. ,

,

6. ,

7–9 Find the length of the curve correct to four decimal places.
(Use your calculator to approximate the integral.)

7. ,

8. ,

9. ,

; 10. Graph the curve with parametric equations ,
, . Find the total length of this curve 

correct to four decimal places.

11. Let be the curve of intersection of the parabolic cylinder
and the surface . Find the exact length of 

from the origin to the point .�6, 18, 36�
C3z � xyx 2 � 2y

C

z � sin 3ty � sin 2t
x � sin t

0 � t � 
�4r�t� � �sin t, cos t, tan t�

1 � t � 2r�t� � � t, ln t, t ln t�

1 � t � 4r�t� � �st , t, t 2 �

0 � t � 1r�t� � 12t i � 8t 3�2 j � 3t 2 k

0 � t � 1r�t� �  i � t 2 j � t 3 k5.

0 � t � 
�4r�t� � cos t i � sin t j � ln cos t k

0 � t � 1r�t� � s2 t i � e t j � e�t k3.

0 � t � 1r�t� � �2t, t 2, 13 t 3 �
�10 � t � 10r�t� � �2 sin t, 5t, 2 cos t�
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36–37 Two graphs, and , are shown. One is a curve 
and the other is the graph of its curvature function .
Identify each curve and explain your choices.

36.

38. (a) Graph the curve . At how
many points on the curve does it appear that the curvature
has a local or absolute maximum?

(b) Use a CAS to find and graph the curvature function. Does
this graph confirm your conclusion from part (a)?

39. The graph of is shown in
Figure 12(b) in Section 13.1. Where do you think the curva-
ture is largest? Use a CAS to find and graph the curvature
function. For which values of is the curvature largest?

40. Use Theorem 10 to show that the curvature of a plane para-
metric curve , is

where the dots indicate derivatives with respect to .

41–42 Use the formula in Exercise 40 to find the curvature.

41. ,

42. ,

43–44 Find the vectors , , and at the given point.

,

44. ,

45–46 Find equations of the normal plane and osculating plane
of the curve at the given point.

45. , , ;

46. , , ;

; 47. Find equations of the osculating circles of the ellipse
at the points and . Use a graphing

calculator or computer to graph the ellipse and both oscu-
lating circles on the same screen.

�0, 3��2, 0�9x 2 � 4y 2 � 36

�1, 1, 1�z � t 3y � t 2x � t

�0, 
, �2�z � 2 cos 3ty � tx � 2 sin 3t

�1, 0, 0�r�t� � �cos t, sin t, ln cos t �

(1, 2
3 , 1)r�t� � � t 2, 2

3 t 3, t�43.

BNT

y � t � t 2x � 1 � t 3

y � et sin tx � et cos t

t

� � 
 x�y�� � y�x�� 


x� 2 � y� 2 �3�2

y � t�t�x � f �t�

t

r�t� � � t �
3
2 sin t, 1 �

3
2 cos t, t�CAS

r�t� � �sin 3t, sin 2t, sin 3t�CAS

y

x

a

b

y

x

a

b

37.

y � ��x�
y � f �x�ba18. ,

19.

20.

21–23 Use Theorem 10 to find the curvature.

21.

22.

23.

24. Find the curvature of at the 
point (1, 0, 0).

25. Find the curvature of at the point (1, 1, 1).

; 26. Graph the curve with parametric equations

and find the curvature at the point .

27–29 Use Formula 11 to find the curvature.

27. 28. 29.

30–31 At what point does the curve have maximum curvature?
What happens to the curvature as ?

30.

32. Find an equation of a parabola that has curvature 4 at the 
origin.

(a) Is the curvature of the curve shown in the figure greater
at or at ? Explain.

(b) Estimate the curvature at and at by sketching the 
osculating circles at those points.

; 34–35 Use a graphing calculator or computer to graph both the
curve and its curvature function on the same screen. Is the
graph of what you would expect?

34. 35. y � x�2y � x 4 � 2x 2

�
��x�

1

1 x0

y P

Q

C

QP
QP

C33.

y � e x31.y � ln x

x l �

y � 4x 5�2y � cos xy � 2x � x 2

�1, 4, �1�

z � �t 2y � 4t 3�2x � t

r�t� � � t, t 2, t 3 �

r�t� � �e t cos t, e t sin t, t �

r�t� � 3t i � 4 sin t j � 4 cos t k

r�t� � t i � t j � �1 � t 2 � k

r�t� � t 2 i � t k

r�t� � � t, 12 t 2, t 2�
r�t� � �s2 t, e t, e �t�

t 	 0r�t� � � t 2, sin t � t cos t, cos t � t sin t�
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55. Use the Frenet-Serret formulas to prove each of the following.
(Primes denote derivatives with respect to . Start as in the
proof of Theorem 10.)
(a) (b)

(c)

(d)

56. Show that the circular helix , 
where and are positive constants, has constant curvature
and constant torsion. [Use the result of Exercise 55(d).]

57. Use the formula in Exercise 55(d) to find the torsion of the
curve .

58. Find the curvature and torsion of the curve ,
, at the point .

59. The DNA molecule has the shape of a double helix (see 
Figure 3 on page 819). The radius of each helix is about
10 angstroms (1 ). Each helix rises about 
during each complete turn, and there are about 
complete turns. Estimate the length of each helix.

60. Let’s consider the problem of designing a railroad track to
make a smooth transition between sections of straight track.
Existing track along the negative -axis is to be joined
smoothly to a track along the line for .
(a) Find a polynomial of degree 5 such that the

function defined by

is continuous and has continuous slope and continuous
curvature.

; (b) Use a graphing calculator or computer to draw the graph
of .F

F�x� � �0

P�x�
1

if x � 0

if 0 � x � 1

if x � 1

F
P � P�x�

x � 1y � 1
x

2.9 � 108
34 ÅÅ � 10�8 cm

�0, 1, 0�z � ty � cosh t
x � sinh t

r�t� � �t, 12 t 2, 1
3 t 3 �

ba
r�t� � �a cos t, a sin t, bt�

� �
�r� � r�� � r�


 r� � r� 
2

r� � 
s� � �2�s��3 � T � 
3�s�s� � ���s��2 � N � �� �s��3 B

r� � r� � ��s��3 Br� � s�T � ��s��2 N

t
; 48. Find equations of the osculating circles of the parabola

at the points and . Graph both osculating
circles and the parabola on the same screen.

At what point on the curve , , is the 
normal plane parallel to the plane ?

50. Is there a point on the curve in Exercise 49 where the 
osculating plane is parallel to the plane ?
[Note: You will need a CAS for differentiating, for simplify-
ing, and for computing a cross product.]

Show that the curvature is related to the tangent and 
normal vectors by the equation

52. Show that the curvature of a plane curve is ,
where is the angle between and ; that is, is the angle
of inclination of the tangent line. (This shows that the defini-
tion of curvature is consistent with the definition for plane
curves given in Exercise 69 in Section 10.2.)

53. (a) Show that is perpendicular to .
(b) Show that is perpendicular to .
(c) Deduce from parts (a) and (b) that for

some number called the torsion of the curve. (The
torsion measures the degree of twisting of a curve.)

(d) Show that for a plane curve the torsion is .

54. The following formulas, called the Frenet-Serret formulas,
are of fundamental importance in differential geometry:

1.
2.

3.
(Formula 1 comes from Exercise 51 and Formula 3 comes
from Exercise 53.) Use the fact that to deduce
Formula 2 from Formulas 1 and 3.

N � B � T

dB�ds � ��N

dN�ds � ��T � �B

dT�ds � �N

� �s� � 0

��s�
dB�ds � ���s�N

TdB�ds
BdB�ds

�iT�
� � 
 d��ds 


dT
ds

� �N

�51.

x � y � z � 1
CAS

6x � 6y � 8z � 1
z � t 4y � 3tx � t 349.

(1, 1
2 )�0, 0�y � 1

2 x 2
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MOTION IN SPACE: VELOCITY AND ACCELERATION

In this section we show how the ideas of tangent and normal vectors and curvature can be
used in physics to study the motion of an object, including its velocity and acceleration,
along a space curve. In particular, we follow in the footsteps of Newton by using these
methods to derive Kepler’s First Law of planetary motion.

Suppose a particle moves through space so that its position vector at time is .
Notice from Figure 1 that, for small values of , the vector

approximates the direction of the particle moving along the curve . Its magnitude mea-
sures the size of the displacement vector per unit time. The vector (1) gives the average

r�t�

r�t � h� � r�t�
h

1

h
r�t�t

13.4

FIGURE 1

r(t+h)-r(t)

h

O

C

P
Q

rª(t)

r(t+h)
r(t)

x

z

y



where . Then

where . But

where . So

Writing , we obtain the equation

Comparing with Theorem 10.6.6, we see that Equation 12 is the polar equation of a conic
section with focus at the origin and eccentricity . We know that the orbit of a planet is a
closed curve and so the conic must be an ellipse.

This completes the derivation of Kepler’s First Law. We will guide you through the der-
ivation of the Second and Third Laws in the Applied Project on page 848. The proofs of
these three laws show that the methods of this chapter provide a powerful tool for describ-
ing some of the laws of nature.

e

r �
ed

1 � e cos 

12

d � h 2�c

r �
h 2��GM�

1 � e cos 

�

eh 2�c

1 � e cos 


h � 
 h 


r � �v � h� � �r � v� � h � h � h � 
 h 
2 � h 2

e � c��GM�

r �
r � �v � h�

GM � c cos 

�

1

GM
 
r � �v � h�
1 � e cos 


c � 
 c 
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(d) Draw an approximation to the vector v(2) and estimate the
speed of the particle at .

3–8 Find the velocity, acceleration, and speed of a particle with
the given position function. Sketch the path of the particle and
draw the velocity and acceleration vectors for the specified value 
of .

3. ,

4. , t � 1r�t� � �2 � t, 4st �
t � 2r�t� � ��1

2 t 2, t �
t

y

x0 21

2

1

r(2.4)

r(2)

r(1.5)

t � 2
1. The table gives coordinates of a particle moving through space

along a smooth curve.
(a) Find the average velocities over the time intervals [0, 1],

[0.5, 1], [1, 2], and [1, 1.5].
(b) Estimate the velocity and speed of the particle at .

2. The figure shows the path of a particle that moves with position
vector at time .
(a) Draw a vector that represents the average velocity of the

particle over the time interval .
(b) Draw a vector that represents the average velocity over the

time interval .
(c) Write an expression for the velocity vector v(2).

1.5 � t � 2

2 � t � 2.4

tr�t�

t � 1

EXERCISES13.4

t x y

0 2.7 9.8 3.7
0.5 3.5 7.2 3.3
1.0 4.5 6.0 3.0
1.5 5.9 6.4 2.8
2.0 7.3 7.8 2.7

z



26. A gun is fired with angle of elevation . What is the 
muzzle speed if the maximum height of the shell is 500 m?

27. A gun has muzzle speed . Find two angles of eleva-
tion that can be used to hit a target 800 m away.

28. A batter hits a baseball 3 ft above the ground toward the 
center field fence, which is 10 ft high and 400 ft from home
plate. The ball leaves the bat with speed at an 
angle above the horizontal. Is it a home run? (In other
words, does the ball clear the fence?)

29. A medieval city has the shape of a square and is protected 
by walls with length 500 m and height 15 m. You are the
commander of an attacking army and the closest you can get
to the wall is 100 m. Your plan is to set fire to the city by cat-
apulting heated rocks over the wall (with an initial speed of

). At what range of angles should you tell your men to
set the catapult? (Assume the path of the rocks is perpendicu-
lar to the wall.)

30. A ball with mass 0.8 kg is thrown southward into the air with
a speed of at an angle of to the ground. A west
wind applies a steady force of 4 N to the ball in an easterly
direction. Where does the ball land and with what speed?

; 31. Water traveling along a straight portion of a river normally
flows fastest in the middle, and the speed slows to almost
zero at the banks. Consider a long straight stretch of river
flowing north, with parallel banks 40 m apart. If the maxi-
mum water speed is 3 , we can use a quadratic function
as a basic model for the rate of water flow units from the
west bank: .
(a) A boat proceeds at a constant speed of from a point

on the west bank while maintaining a heading perpen-
dicular to the bank. How far down the river on the oppo-
site bank will the boat touch shore? Graph the path of the
boat.

(b) Suppose we would like to pilot the boat to land at the
point on the east bank directly opposite . If we main-
tain a constant speed of and a constant heading,
find the angle at which the boat should head. Then graph
the actual path the boat follows. Does the path seem 
realistic?

32. Another reasonable model for the water speed of the river in
Exercise 31 is a sine function: . If a
boater would like to cross the river from to with con-
stant heading and a constant speed of , determine the
angle at which the boat should head.

33–38 Find the tangential and normal components of the acceler-
ation vector.

33.

34.

36. r�t� � t i � t 2 j � 3t k

r�t� � cos t i � sin t j � t k35.

r�t� � �1 � t� i � �t 2 � 2t� j

r�t� � �3t � t 3 � i � 3t 2 j

5 m�s
BA

f �x� � 3 sin�
x�40�

5 m�s
AB

A
5 m�s

f �x� � 3
400 x�40 � x�

x
m�s

30�30 m�s

80 m�s

50�
115 ft�s

150 m�s

30�5. ,

6. ,

7. ,

8. ,

9–14 Find the velocity, acceleration, and speed of a particle with
the given position function.

9.

10.

12.

13.

14.

15–16 Find the velocity and position vectors of a particle that has
the given acceleration and the given initial velocity and position.

15. , ,

16. , ,

17–18
(a) Find the position vector of a particle that has the given accel-

eration and the specified initial velocity and position.

; (b) Use a computer to graph the path of the particle.

17. , ,

18. , ,

The position function of a particle is given by
. When is the speed a minimum?

20. What force is required so that a particle of mass has the
position function ?

21. A force with magnitude 20 N acts directly upward from the
-plane on an object with mass 4 kg. The object starts at the

origin with initial velocity . Find its position
function and its speed at time .

Show that if a particle moves with constant speed, then the
velocity and acceleration vectors are orthogonal.

23. A projectile is fired with an initial speed of 500 m�s and
angle of elevation . Find (a) the range of the projectile, 
(b) the maximum height reached, and (c) the speed at impact.

24. Rework Exercise 23 if the projectile is fired from a position
200 m above the ground.

A ball is thrown at an angle of to the ground. If the ball
lands 90 m away, what was the initial speed of the ball?

45�25.

30�

22.

t
v�0� � i � j

xy

r�t� � t 3 i � t 2 j � t 3 k
m

r�t� � � t 2, 5t, t 2 � 16t�
19.

r�0� � j � kv�0� � ka�t� � t i � e t j � e�t k

r�0� � jv�0� � ia�t� � 2t i � sin t j � cos 2t k

r�0� � j � kv�0� � ia�t� � 2 i � 6t j � 12t 2 k

r�0� � iv�0� � ka�t� � i � 2 j

r�t� � t sin t i � t cos t j � t 2 k

r�t� � e t�cos t i � sin t j � t k�

r�t� � t 2 i � ln t j � t k

r�t� � s2 t i � e t j � e�t k11.

r�t� � �2 cos t, 3t, 2 sin t�

r�t� � � t 2 � 1, t 3,  t 2 � 1�

t � 0r�t� � t i � 2 cos t j � sin t k

t � 1r�t� � t i � t 2 j � 2 k

t � 0r�t� � e t i � e 2 t j

t � 
�3r�t� � 3 cos t i � 2 sin t j
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41. The position function of a spaceship is

and the coordinates of a space station are . The captain
wants the spaceship to coast into the space station. When
should the engines be turned off?

42. A rocket burning its onboard fuel while moving through space
has velocity and mass at time . If the exhaust gases
escape with velocity relative to the rocket, it can be deduced
from Newton’s Second Law of Motion that

(a) Show that .

(b) For the rocket to accelerate in a straight line from rest to
twice the speed of its own exhaust gases, what fraction of
its initial mass would the rocket have to burn as fuel?

v�t� � v�0� � ln 
m�0�
m�t�

 ve

m 
dv
dt

�
dm

dt
 ve 

ve

tm�t�v�t�

�6, 4, 9�

r�t� � �3 � t� i � �2 � ln t� j � �7 �
4

t 2 � 1	 k

37.

38.

39. The magnitude of the acceleration vector is . Use the
figure to estimate the tangential and normal components of .

40. If a particle with mass moves with position vector , then
its angular momentum is defined as and
its torque as . Show that .
Deduce that if for all , then is constant. (This is
the law of conservation of angular momentum.)

L�t�t� �t� � 0
L��t� � ��t�� �t� � mr�t� � a�t�

L�t� � mr�t� � v�t�
r�t�m

y

x0

a

a
10 cm�s2a

r�t� � t i � cos2t j � sin2t k

r�t� � e t i � s2 t j � e�t k
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Johannes Kepler stated the following three laws of planetary motion on the basis of masses of
data on the positions of the planets at various times.

KEPLER’S LAWS

1. A planet revolves around the sun in an elliptical orbit with the sun at one focus.

2. The line joining the sun to a planet sweeps out equal areas in equal times.

3. The square of the period of revolution of a planet is proportional to the cube of the length
of the major axis of its orbit.

Kepler formulated these laws because they fitted the astronomical data. He wasn’t able to see 
why they were true or how they related to each other. But Sir Isaac Newton, in his Principia 
Mathematica of 1687, showed how to deduce Kepler’s three laws from two of Newton’s own 
laws, the Second Law of Motion and the Law of Universal Gravitation. In Section 13.4 we 
proved Kepler’s First Law using the calculus of vector functions. In this project we guide you
through the proofs of Kepler’s Second and Third Laws and explore some of their consequences.

1. Use the following steps to prove Kepler’s Second Law. The notation is the same as in 
the proof of the First Law in Section 13.4. In particular, use polar coordinates so that

.

(a) Show that .

(b) Deduce that .

(c) If is the area swept out by the radius vector in the time interval 
as in the figure, show that

dA

dt
� 1

2 r 2 
d


dt


t0, t�r � r�t�A � A�t�

r 2 
d


dt
� h

h � r 2 
d


dt
 k

r � �r cos 
� i � �r sin 
� j

KEPLER’S LAWSA P P L I E D
P R O J E C T

0

r(t)
r(t¸)A(t)
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y


