
PROPERTIES OF DOUBLE INTEGRALS

We list here three properties of double integrals that can be proved in the same manner as
in Section 5.2. We assume that all of the integrals exist. Properties 7 and 8 are referred to
as the linearity of the integral.

where c is a constant

If for all in , then
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958 | | | | CHAPTER 15 MULTIPLE INTEGRALS

N Double integrals behave this way because
the double sums that define them behave 
this way.

(b) Estimate the double integral with by choosing
the sample points to be the points farthest from the origin.

6. A 20-ft-by-30-ft swimming pool is filled with water. The depth
is measured at 5-ft intervals, starting at one corner of the pool,
and the values are recorded in the table. Estimate the volume of
water in the pool.

Let be the volume of the solid that lies under the graph of
and above the rectangle given by

, . We use the lines and to y � 4x � 32 � y � 62 � x � 4
f �x, y� � s52 � x 2 � y 2 
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m � n � 4(a) Estimate the volume of the solid that lies below 
the surface and above the rectangle

, 

Use a Riemann sum with , , and take the sample
point to be the upper right corner of each square.
(b) Use the Midpoint Rule to estimate the volume of the solid

in part (a).

2. If , use a Riemann sum with ,
to estimate the value of . Take the 

sample points to be the upper left corners of the squares.

3. (a) Use a Riemann sum with to estimate the value
of , where . Take the
sample points to be lower left corners.

(b) Use the Midpoint Rule to estimate the integral in part (a).

4. (a) Estimate the volume of the solid that lies below the surface
and above the rectangle .

Use a Riemann sum with and choose the 
sample points to be lower right corners.

(b) Use the Midpoint Rule to estimate the volume in part (a).

5. A table of values is given for a function defined on
.

(a) Estimate using the Midpoint Rule with
.m � n � 2
xxR f �x, y� dA

R � �1, 3� � �0, 4�
f �x, y�

m � n � 2
R � �0, 2� � �0, 4�z � x � 2y 2

R � �0, �� � �0, ��xxR sin�x � y� dA
m � n � 2

xxR �y 2 � 2x 2� dAn � 2
m � 4R � ��1, 3� � �0, 2�

n � 2m � 3

0 � y � 4�R � ��x, y� � 0 � x � 6

z � xy
1.
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0 5 10 15 20 25 30

0 2 3 4 6 7 8 8

5 2 3 4 7 8 10 8

10 2 4 6 8 10 12 10

15 2 3 4 5 6 8 7

20 2 2 2 2 3 4 4



EXAMPLE 5 If , then, by Equation 5,

M

FIGURE 6

y

x

z

0

 � [�cos x]0

�	2 [sin y]0

�	2
� 1 � 1 � 1

 yy
R

 sin x cos y dA � y�	2

0
 sin x dx y�	2

0
 cos y dy

R � �0, �	2� � �0, �	2�
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N The function in 
Example 5 is positive on , so the integral repre-
sents the volume of the solid that lies above 
and below the graph of shown in Figure 6.f

R
R

f �x, y� � sin x cos y

18. ,

,

20. ,

21. ,

22. ,

23–24 Sketch the solid whose volume is given by the iterated 
integral.

24.

25. Find the volume of the solid that lies under the plane
and above the rectangle

.

26. Find the volume of the solid that lies under the hyperbolic
paraboloid and above the square

.R � ��1, 1� � �0, 2�
z � 4 � x 2 � y 2

R � ��x, y� � 0 � x � 1, �2 � y � 3�
3x � 2y � z � 12

y1

0
 y1

0
 �2 � x 2 � y 2 � dy dx

y1

0
 y1

0
 �4 � x � 2y� dx dy23.

R � �1, 2� � �0, 1�yy
R

 
x

x 2 � y 2  dA

R � �0, 1� � �0, 2�yy
R

 xye x2y dA

R � �0, 1� � �0, 1�yy
R

 
x

1 � xy
 dA

R � �0, �	6� � �0, �	3�yy
R

 x sin�x � y� dA19.

R � ��x, y� � 0 � x � 1, 0 � y � 1�yy
R

 
1 � x 2

1 � y 2  dA
1–2 Find and .

1. 2.

3–14 Calculate the iterated integral.

4.

5. 6.

7. 8.

10.

11. 12.

13. 14.

15–22 Calculate the double integral.

15. ,

16. ,

, R � ��x, y� � 0 � x � 1, �3 � y � 3�yy
R

 
xy 2

x 2 � 1
 dA17.

R � ��x, y� � 0 � x � �, 0 � y � �	2�yy
R

 cos�x � 2y� dA

R � ��x, y� � 0 � x � 3, 0 � y � 1�yy
R

 �6x 2y 3 � 5y 4 � dA

y1

0
 y1

0
 ss � t  ds dty2

0
 y�

0
 r sin2� d� dr

y1

0
 y1

0
 xysx 2 � y 2  dy dxy1

0
 y1

0
 �u � v�5 du dv

y1

0
 y3

0
 e x�3y dx dyy4

1
 y2

1
 
 x

y
�

y

x� dy dx9.

y1

0
y2

1
 
xe x

y
 dy dxy2

0
 y1

0
 �2x � y�8 dx dy

y�	2

�	6
 y5

�1
 cos y dx dyy2

0
 y�	2

0
 x sin y dy dx

y1

0
y2

1
 �4x 3 � 9x 2 y2� dy dxy3

1
 y1

0
 �1 � 4xy� dx dy3.

f �x, y� � y � xe yf �x, y� � 12x 2 y3

x10  f �x, y� dyx50  f �x, y� dx
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34. Graph the solid that lies between the surfaces
and for ,

. Use a computer algebra system to approximate the
volume of this solid correct to four decimal places.

35–36 Find the average value of over the given rectangle.

, has vertices , , , 

36. ,

37. Use your CAS to compute the iterated integrals 

Do the answers contradict Fubini’s Theorem? Explain what 
is happening.

38. (a) In what way are the theorems of Fubini and Clairaut 
similar?

(b) If is continuous on and 

for , , show that .txy � tyx � f �x, y�c 	 y 	 da 	 x 	 b

t�x, y� � y x

a
 yy

c
  f �s, t� dt ds

�a, b� � �c, d �f �x, y�

y1

0
 y1

0
 

x � y

�x � y�3  dx dyandy1

0
 y1

0
 

x � y

�x � y�3  dy dx

CAS

R � �0, 4� � �0, 1�f �x, y� � e ysx � e y 

�1, 0��1, 5���1, 5���1, 0�Rf �x, y� � x 2 y35.

f

� y � � 1
� x � � 1z � 2 � x 2 � y 2z � e�x2

cos �x 2 � y 2 �
CASFind the volume of the solid lying under the elliptic 

paraboloid and above the rectangle
.

28. Find the volume of the solid enclosed by the surface
and the planes , , , 

and .

29. Find the volume of the solid enclosed by the surface
and the planes , , , , 

and .

30. Find the volume of the solid in the first octant bounded by 
the cylinder and the plane .

31. Find the volume of the solid enclosed by the paraboloid
and the planes , , ,

, and .

; 32. Graph the solid that lies between the surface
and the plane and is bounded

by the planes , , , and . Then find its
volume.

33. Use a computer algebra system to find the exact value of the
integral , where . Then use
the CAS to draw the solid whose volume is given by the 
integral.

R � �0, 1� � �0, 1�xx
R
 x 5y 3e x y dA

CAS

y � 4y � 0x � 2x � 0
z � x � 2yz � 2xy	�x 2 � 1�

y � 4y � 0
x � �1x � 1z � 1z � 2 � x 2 � �y � 2�2

y � 5z � 16 � x 2

y � �	4
y � 0x � 2x � 0z � 0z � x sec2y

z � 0
y � �y � 0x � 
1z � 1 � e x sin y

R � ��1, 1� � ��2, 2�
x 2	4 � y 2	9 � z � 1

27.
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DOUBLE INTEGRALS OVER GENERAL REGIONS

For single integrals, the region over which we integrate is always an interval. But for 
double integrals, we want to be able to integrate a function not just over rectangles but
also over regions of more general shape, such as the one illustrated in Figure 1. We sup-
pose that is a bounded region, which means that can be enclosed in a rectangular
region as in Figure 2. Then we define a new function with domain by

0

y

x

D

y

0 x

D

R

FIGURE 2FIGURE 1

F�x, y� � �0

f �x, y� if

if

�x, y� is in D

�x, y� is in R but not in D
1

RFR
DD

D
f

15.3
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is bounded by the circle with center the origin and radius 2

18. is the triangular region with vertices ,

, and 

19–28 Find the volume of the given solid.

19. Under the plane and above the region
bounded by and 

20. Under the surface and above the region bounded
by and 

Under the surface and above the triangle with vertices
, , and 

22. Enclosed by the paraboloid and the planes ,
, , 

23. Bounded by the coordinate planes and the plane

24. Bounded by the planes , , , and 

25. Enclosed by the cylinders , and the planes 
, 

26. Bounded by the cylinder and the planes 
, in the first octant

27. Bounded by the cylinder and the planes ,
, in the first octant

28. Bounded by the cylinders and 

; 29. Use a graphing calculator or computer to estimate the 
-coordinates of the points of intersection of the curves 

and . If is the region bounded by these curves,
estimate .xxD x dA

Dy � 3x � x 2
y � x 4x

y 2 � z2 � r 2x 2 � y 2 � r 2

z � 0x � 0
y � zx 2 � y 2 � 1

z � 0x � 0
x � 2y,y 2 � z2 � 4

y � 4z � 0
y � x 2z � x 2

z � 0x � y � 2y � xz � x

3x � 2y � z � 6

z � 0y � xy � 1
x � 0z � x 2 � 3y 2

�1, 2��4, 1��1, 1�
z � xy21.

x � y 3x � y 2
z � 2x � y 2

y � x 4y � x
x � 2y � z � 0

�0, 3��1, 2�

�0, 0�yy
D

 2xy dA, D

D

yy
D

 �2x � y� dA,17.1–6 Evaluate the iterated integral.

1. 2.

3. 4.

6.

7–18 Evaluate the double integral.

7.

8.

9.

10.

11.

12. ,

, is bounded by , ,

14. , is bounded by 

15. ,

is the triangular region with vertices (0, 2), (1, 1), 

16. yy
D

 xy 2 dA, D is enclosed by x � 0 and x � s1 � y 2 

�3, 2�D

yy
D

 y 3 dA

y � sx  and y � x 2Dyy
D

 �x � y� dA

x � 1y � x 2y � 0Dyy
D

 x cos y dA13.

D � ��x, y� � 0 � y � 1, 0 � x � y�yy
D

 xsy 2 � x 2  dA

yy
D

 y 2e xy dA, D � ��x, y� � 0 � y � 4, 0 � x � y�

yy
D

 x 3 dA, D � ��x, y� � 1 � x � e, 0 � y � ln x�

yy
D

 x dA, D � ��x, y� � 0 � x � �, 0 � y � sin x�

yy
D

 
y

x 5 � 1
 dA, D � ��x, y� � 0 � x � 1, 0 � y � x 2�

yy
D

 y 2 dA, D � ��x, y� � �1 � y � 1, �y � 2 � x � y�

y1

0
 yv

0
 s1 � v 2  du dvy�	2

0
 ycos �

0
 e sin � dr d�5.

y2

0
 y2y

y
 xy dx dyy1

0
 yx

x 2
 �1 � 2y� dy dx

y1

0
 y2

2x
 �x � y� dy dxy4

0
 ysy

0
 xy 2 dx dy
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EXAMPLE 6 Use Property 11 to estimate the integral , where is the disk
with center the origin and radius 2.

SOLUTION Since and , we have and
therefore

Thus, using , , and in Property 11, we obtain

M
4�

e
� yy

D

 e sin x cos y dA � 4�e 

A�D� � � �2�2M � em � e�1 � 1	e

e�1 � e sin x cos y � e 1 � e

�1 � sin x cos y � 1�1 � cos y � 1�1 � sin x � 1

Dxx
D
 e sin x cos y dA
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51–52 Express as a union of regions of type I or type II and
evaluate the integral.

52.

53–54 Use Property 11 to estimate the value of the integral.

53. , is the quarter-circle with center the origin 

and radius in the first quadrant

54. , is the triangle enclosed by the lines 

, , and 

55–56 Find the average value of over region .

55. , is the triangle with vertices , 
and 

56. , is enclosed by the curves , 
, and 

57. Prove Property 11.

In evaluating a double integral over a region , a sum of 
iterated integrals was obtained as follows:

Sketch the region and express the double integral as an 
iterated integral with reversed order of integration.

59. Evaluate , where
[Hint: Exploit the fact that 

is symmetric with respect to both axes.]

60. Use symmetry to evaluate , where 
is the region bounded by the square with vertices 
and .

61. Compute , where is the disk
, by first identifying the integral as the volume 

of a solid.

62. Graph the solid bounded by the plane and 
the paraboloid and find its exact volume.
(Use your CAS to do the graphing, to find the equations of
the boundary curves of the region of integration, and to eval-
uate the double integral.)

z � 4 � x 2 � y 2
x � y � z � 1CAS

x 2 � y 2 � 1
DxxD s1 � x 2 � y 2  dA

�0, 
5�
�
5, 0�

DxxD �2 � 3x � 4y� dA

D
D � ��x, y� � x 2 � y 2 � 2�.

xx
D
 �x 2 tan x � y 3 � 4� dA

D

yy
D

 f �x, y� dA � y1

0
 y2y

0
 f �x, y� dx dy � y3

1
 y3�y

0
 f �x, y� dx dy

D58.

x � 1y � x 2
y � 0Df �x, y� � x sin y

�1, 3�
�0, 0�, �1, 0�Df �x, y� � xy

Df

x � 1y � 2xy � 0

Tyy
T

 sin4�x � y� dA

1
2

Qyy
Q

 e��x2�y2�2

 dA

0

_1

1

_1

x=y-Á

y=(x+1)@

y

x0

1

_1

_1 1

D
(1, 1)

x

y

yy
D

 y dAyy
D

 x 2 dA51.

D; 30. Find the approximate volume of the solid in the first octant 
that is bounded by the planes , , and and
the cylinder . (Use a graphing device to estimate
the points of intersection.)

31–32 Find the volume of the solid by subtracting two volumes.

31. The solid enclosed by the parabolic cylinders 
, and the planes ,

32. The solid enclosed by the parabolic cylinder and the
planes , 

33–34 Sketch the solid whose volume is given by the iterated 
integral.

33. 34.

35–38 Use a computer algebra system to find the exact volume
of the solid.

35. Under the surface and above the region
bounded by the curves and for 

36. Between the paraboloids and
and inside the cylinder 

37. Enclosed by 

38. Enclosed by 

39–44 Sketch the region of integration and change the order of
integration.

39. 40.

41. 42.

44.

45–50 Evaluate the integral by reversing the order of integration.

46.

47. 48.

49.

50. y8

0
 y2

sy3
 ex4

 dx dy

y1

0
 y�	2

arcsin y
 cos x s1 � cos2x  dx dy

y1

0
 y1

x
 e x	y dy dxy4

0
 y2

sx  
 

1

y3 � 1
 dy dx

ys� 

0
  ys� 

y
 cos�x 2� dx dyy1

0
 y3

3y
 e x2 

dx dy45.

y1

0
 y�	4

arctan x
 f �x, y� dy dxy2

1
 yln

 
x

0
 f �x, y� dy dx43.

y3

0
 ys9�y

0
 f �x, y� dx dyy3

0
 ys9�y 2 

�s9�y 2
  f �x, y� dx dy

y1

0
 y4

4x
 f �x, y� dy dxy4

0
 ysx

0
 f �x, y� dy dx

z � x 2 � y 2 and z � 2y

z � 1 � x 2 � y 2 and z � 0

x 2 � y 2 � 1z � 8 � x 2 � 2y 2
z � 2x 2 � y 2

x � 0y � x 2 � xy � x 3 � x
z � x 3y 4 � xy 2

CAS

y1

0
 y1�x 2

0
 �1 � x� dy dxy1

0
 y1�x

0
 �1 � x � y� dy dx

z � 2 � yz � 3y
y � x 2

2x � 2y � z � 10 � 0
x � y � z � 2y � x 2 � 1y � 1 � x 2

y � cos x
z � xz � 0y � x



EXAMPLE 4 Find the volume of the solid that lies under the paraboloid ,
above the -plane, and inside the cylinder .

SOLUTION The solid lies above the disk whose boundary circle has equation
or, after completing the square,

(See Figures 9 and 10.) In polar coordinates we have and , so
the boundary circle becomes , or . Thus the disk is given by

and, by Formula 3, we have

M � 2[3
2 � � sin 2� �

1
8 sin 4�]0

�	2
� 2
3

2�
�

2 � �
3�

2

 � 2 y�	2

0
 [1 � 2 cos 2� �

1
2 �1 � cos 4��] d�

� 8 y�	2

0
 cos4� d� � 8 y�	2

0
 
1 � cos 2�

2 �2

 d�� 4 y�	2

��	2
 cos4� d�

� y�	2

��	2
 
 r 4

4 �0

2 cos �

 d� V � yy
D

 �x 2 � y 2 � dA � y�	2

��	2
 y2

 
cos �

0
 r 2 r dr d�

D � ��r, � � � ��	2 � � � �	2, 0 � r � 2 cos � �

Dr � 2 cos �r 2 � 2r cos �
x � r cos �x 2 � y 2 � r 2

�x � 1�2 � y 2 � 1

x 2 � y 2 � 2x
D

x 2 � y 2 � 2xxy
z � x 2 � y 2V
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FIGURE 9

0

y

x
1 2

D

(x-1)@+¥=1

 (or  r=2 cos ¨)

FIGURE 10

y

x

z

5–6 Sketch the region whose area is given by the integral and eval-
uate the integral.

5. 6.

7–14 Evaluate the given integral by changing to polar coordinates.

7. ,
where is the disk with center the origin and radius 3

8. , where is the region that lies to the left of the
-axis between the circles and 

9. , where is the region that lies above the 
-axis within the circle 

10. ,
where 

, where D is the region bounded by the
semicircle and the y-axis

12. , where is the region in the first quadrant enclosed
by the circle x 2 � y 2 � 25

Rxx
R
 yex dA

x � s4 � y 2 

xx
D
 e�x2�y2

 dA11.

R � ��x, y� � x 2 � y 2 � 4, x � 0�
xx

R
 s4 � x 2 � y 2  dA

x 2 � y 2 � 9x
Rxx

R
 cos�x 2 � y 2� dA

x 2 � y 2 � 4x 2 � y 2 � 1y
Rxx

R
 �x � y� dA

D
xxD xy dA

y�	2

0
 y4 cos �

0
 r dr d�y2�

�
 y7

4
 r dr d�

1–4 A region is shown. Decide whether to use polar coordinates
or rectangular coordinates and write as an iterated
integral, where is an arbitrary continuous function on .

2.

3. 4.

0

y

x

6

3

0

y

x_1 1

1

0

y

x_1 1

1 y=1-≈

0 4

4

y

x

1.

Rf
xx

R
 f �x, y� dA

R
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33. A swimming pool is circular with a 40-ft diameter. The depth
is constant along east-west lines and increases linearly from
2 ft at the south end to 7 ft at the north end. Find the volume of
water in the pool.

34. An agricultural sprinkler distributes water in a circular pattern
of radius 100 ft. It supplies water to a depth of feet per hour
at a distance of feet from the sprinkler.
(a) If , what is the total amount of water supplied

per hour to the region inside the circle of radius centered
at the sprinkler?

(b) Determine an expression for the average amount of water
per hour per square foot supplied to the region inside the
circle of radius .

Use polar coordinates to combine the sum

into one double integral. Then evaluate the double integral.

36. (a) We define the improper integral (over the entire plane 

where is the disk with radius and center the origin.
Show that

(b) An equivalent definition of the improper integral in part (a)
is

where is the square with vertices . Use this to
show that

(c) Deduce that

(d) By making the change of variable , show that

(This is a fundamental result for probability and statistics.)

37. Use the result of Exercise 36 part (c) to evaluate the following
integrals.

(a) (b) y�

0
 sx e�x dxy�

0
 x 2e�x2 dx

y�

��
 e�x2	2 dx � s2� 

t � s2 x

y�

��
 e�x2 dx � s� 

y�

��
 e�x2 dx y�

��
 e�y2 dy � �

�
a, 
a�Sa

yy
� 2

 e��x2�y2 � dA � lim
a l �

 yy
Sa

 e��x2�y2 � dA

y�

��
 y�

��
 e��x2�y2 � dA � �

aDa

 � lim
a l �

  yy
Da

 e��x2�y2 � dA

 I � yy
� 2

 e��x2�y2 � dA � y�

��
 y�

��
 e��x2�y2 � dy dx

�2�

y1

1	s2
 yx

s1�x 2 
 xy dy dx � ys2

1
 yx

0
 xy dy dx � y2

s2
 ys4�x 2 

0
 xy dy dx

35.

R

R
0 	 R � 100

r
e�r

,
where 

14. , where is the region in the first quadrant that lies
between the circles and 

15–18 Use a double integral to find the area of the region.

One loop of the rose 

16. The region enclosed by the curve 

17. The region within both of the circles and 

18. The region inside the cardioid and outside the
circle 

19–27 Use polar coordinates to find the volume of the given solid.

19. Under the cone and above the disk 

20. Below the paraboloid and above the 
-plane

21. Enclosed by the hyperboloid and the 
plane 

22. Inside the sphere and outside the 
cylinder 

23. A sphere of radius 

24. Bounded by the paraboloid and the 
plane in the first octant

Above the cone and below the sphere

26. Bounded by the paraboloids and

27. Inside both the cylinder and the ellipsoid

28. (a) A cylindrical drill with radius is used to bore a hole
through the center of a sphere of radius . Find the volume
of the ring-shaped solid that remains.

(b) Express the volume in part (a) in terms of the height of
the ring. Notice that the volume depends only on , not 
on or .

29–32 Evaluate the iterated integral by converting to polar 
coordinates.

29. 30.

31. 32. y2

0
 ys2x�x 2  

0
 sx 2 � y 2

 

 dy dxy1

0
ys2�y 2  

y
 �x � y� dx dy

ya

0
 y0

�sa 2 �y 2  
 x 2 y dx dyy3

�3
 ys9�x 2 

0
 sin�x 2 � y2� dy dx

r2r1

h
h

r2

r1

4x 2 � 4y 2 � z2 � 64
x 2 � y 2 � 4

z � 4 � x 2 � y 2
z � 3x 2 � 3y 2

x 2 � y 2 � z2 � 1
z � sx 2 � y 2 25.

z � 7
z � 1 � 2x 2 � 2y 2

a

x 2 � y 2 � 4
x 2 � y 2 � z 2 � 16

z � 2
�x 2 � y 2 � z2 � 1

xy
z � 18 � 2x 2 � 2y 2

x 2 � y 2 � 4z � sx 2 � y 2 

r � 3 cos �
r � 1 � cos �

r � sin �r � cos �

r � 4 � 3 cos �

r � cos 3�15.

x 2 � y 2 � 2xx 2 � y 2 � 4
Dxx

D
 x dA

R � ��x, y� � 1 � x 2 � y 2 � 4, 0 � y � x�
xxR arctan� y	x� dA13.



EXAMPLE 8 A factory produces (cylindrically shaped) roller bearings that are sold as
having diameter 4.0 cm and length 6.0 cm. In fact, the diameters X are normally distrib-
uted with mean 4.0 cm and standard deviation 0.01 cm while the lengths Y are normally
distributed with mean 6.0 cm and standard deviation 0.01 cm. Assuming that X and Y are
independent, write the joint density function and graph it. Find the probability that a
bearing randomly chosen from the production line has either length or diameter that
differs from the mean by more than 0.02 cm.

SOLUTION We are given that X and Y are normally distributed with , and
. So the individual density functions for X and Y are

Since X and Y are independent, the joint density function is the product:

A graph of this function is shown in Figure 9.
Let’s first calculate the probability that both X and Y differ from their means by less

than 0.02 cm. Using a calculator or computer to estimate the integral, we have

Then the probability that either X or Y differs from its mean by more than 0.02 cm is
approximately

M1 � 0.91 � 0.09

 � 0.91

 �
5000

�
 y4.02

3.98
 y6.02

5.98
 e�5000��x�4�2�� y�6�2� dy dx

 P�3.98 	 X 	 4.02, 5.98 	 Y 	 6.02� � y4.02

3.98
 y6.02

5.98
 f �x, y� dy dx

 �
5000

�
 e�5000��x�4�2�� y�6�2�

 f �x, y� � f1�x� f2�y� �
1

0.0002�
 e��x�4�2	0.0002e��y�6�2	0.0002

f2�y� �
1

0.01s2�  e
�� y�6�2	0.0002f1�x� �

1

0.01s2�  e
��x�4�2	0.0002

�1 � �2 � 0.01

2 � 6.0,
1 � 4.0
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FIGURE 9
Graph of the bivariate normal joint
density function in Example 8
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4. ;

is the triangular region with vertices , , ;

6. is the triangular region enclosed by the lines , ,
and ;

7. is bounded by , , , and ;

8. is bounded by , , and ;

9. ;

10. is bounded by the parabolas and ;
��x, y� � sx 

x � y 2y � x 2D

��x, y� � yD � ��x, y� � 0 � y � sin��x	L�, 0 � x � L�

��x, y� � xx � 1y � 0y � sx D

��x, y� � yx � 1x � 0y � 0y � e xD

��x, y� � x 22x � y � 6
y � xx � 0D

��x, y� � x � y
�0, 3��2, 1��0, 0�D5.

��x, y� � cxyD � ��x, y� � 0 � x � a, 0 � y � b�Electric charge is distributed over the rectangle ,
so that the charge density at is

(measured in coulombs per square meter).
Find the total charge on the rectangle.

2. Electric charge is distributed over the disk so 
that the charge density at is 
(measured in coulombs per square meter). Find the total charge
on the disk.

3–10 Find the mass and center of mass of the lamina that occupies
the region and has the given density function .

3. ; ��x, y� � xy 2D � ��x, y� � 0 � x � 2, �1 � y � 1�

�D

� �x, y� � x � y � x 2 � y 2�x, y�
x 2 � y 2 � 4

� �x, y� � 2xy � y 2
�x, y�0 � y � 2

1 � x � 31.
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The joint density function for a pair of random variables 
and is

(a) Find the value of the constant .
(b) Find .
(c) Find .

28. (a) Verify that

is a joint density function.
(b) If and are random variables whose joint density func-

tion is the function in part (a), find

(i) (ii)
(c) Find the expected values of and .

Suppose and are random variables with joint density 
function

(a) Verify that is indeed a joint density function.
(b) Find the following probabilities.

(i) (ii)
(c) Find the expected values of and .

30. (a) A lamp has two bulbs of a type with an average lifetime
of 1000 hours. Assuming that we can model the proba-
bility of failure of these bulbs by an exponential density
function with mean , find the probability that
both of the lamp’s bulbs fail within 1000 hours.

(b) Another lamp has just one bulb of the same type as in
part (a). If one bulb burns out and is replaced by a bulb 
of the same type, find the probability that the two bulbs
fail within a total of 1000 hours.

31. Suppose that and are independent random variables,
where is normally distributed with mean 45 and standard
deviation 0.5 and is normally distributed with mean 20 and
standard deviation 0.1.
(a) Find .
(b) Find .

32. Xavier and Yolanda both have classes that end at noon and
they agree to meet every day after class. They arrive at the
coffee shop independently. Xavier’s arrival time is and
Yolanda’s arrival time is , where and are measured in
minutes after noon. The individual density functions are

(Xavier arrives sometime after noon and is more likely to
arrive promptly than late. Yolanda always arrives by 12:10 PM

and is more likely to arrive late than promptly.) After Yolanda
arrives, she’ll wait for up to half an hour for Xavier, but he
won’t wait for her. Find the probability that they meet.

f2�y� � � 1
50 y

0

if 0 � y � 10

otherwise
f1�x� � �e�x

0

if x � 0

if x 	 0

YXY
X

P�4�X � 45�2 � 100�Y � 20�2 � 2�
P�40 � X � 50, 20 � Y � 25�

Y
X

YXCAS


 � 1000

YX
P�X � 2, Y � 4�P�Y � 1�

f

f �x, y� � �0.1e��0.5x�0.2y�

0

if x � 0, y � 0

otherwise

YX29.

YX
P(X �

1
2 , Y �

1
2 )P(X �

1
2 )

f
YX

f �x, y� � �4xy

0

if 0 � x � 1, 0 � y � 1

otherwise

P�X � Y � 1�
P�X � 1, Y � 1�

C

f �x, y� � �Cx�1 � y�
0

if 0 � x � 1, 0 � y � 2

otherwise

Y
X27.11. A lamina occupies the part of the disk in the

first quadrant. Find its center of mass if the density at any
point is proportional to its distance from the -axis.

12. Find the center of mass of the lamina in Exercise 11 if the 
density at any point is proportional to the square of its
distance from the origin.

13. The boundary of a lamina consists of the semicircles
and together with the portions 

of the -axis that join them. Find the center of mass of the
lamina if the density at any point is proportional to its dis-
tance from the origin.

14. Find the center of mass of the lamina in Exercise 13 if the
density at any point is inversely proportional to its distance
from the origin.

Find the center of mass of a lamina in the shape of an isos-
celes right triangle with equal sides of length if the density
at any point is proportional to the square of the distance from
the vertex opposite the hypotenuse.

16. A lamina occupies the region inside the circle 
but outside the circle . Find the center of mass 
if the density at any point is inversely proportional to its dis-
tance from the origin.

17. Find the moments of inertia , , for the lamina of 
Exercise 7.

18. Find the moments of inertia , , for the lamina of 
Exercise 12.

19. Find the moments of inertia , , for the lamina of 
Exercise 15.

20. Consider a square fan blade with sides of length 2 and the
lower left corner placed at the origin. If the density of the
blade is , is it more difficult to rotate the
blade about the -axis or the -axis?

21–22 Use a computer algebra system to find the mass, center 
of mass, and moments of inertia of the lamina that occupies the
region and has the given density function.

21. ;

22. is enclosed by the cardioid ;

23–26 A lamina with constant density occupies the
given region. Find the moments of inertia and and the radii
of gyration and .

23. The rectangle 

24. The triangle with vertices , , and 

25. The part of the disk in the first quadrant

26. The region under the curve from to x � �x � 0y � sin x

x 2 � y 2 � a2

�0, h��b, 0��0, 0�

0 � x � b, 0 � y � h

yx
IyIx

��x, y� � �CAS

��x, y� � sx 2 � y 2 

r � 1 � cos �D

��x, y� � xyD � ��x, y� � 0 � y � sin x, 0 � x � � �

D

CAS

yx
��x, y� � 1 � 0.1x

I0IyIx

I0IyIx

I0IyIx

x 2 � y 2 � 1
x 2 � y 2 � 2y

a
15.

x
y � s4 � x 2 y � s1 � x 2 

x

x 2 � y 2 � 1
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; 16. , where is the region bounded by the curves
, , , ; , . 

Illustrate by using a graphing calculator or computer to 
draw .

17. (a) Evaluate , where is the solid enclosed by the 
ellipsoid . Use the transfor-
mation , , .

(b) The earth is not a perfect sphere; rotation has resulted in
flattening at the poles. So the shape can be approximated
by an ellipsoid with km and km.
Use part (a) to estimate the volume of the earth.

18. If the solid of Exercise 17(a) has constant density , find its
moment of inertia about the -axis.

19–23 Evaluate the integral by making an appropriate change of
variables.

19. , where is the parallelogram enclosed by

the lines , , , and

20. , where is the rectangle enclosed by the
lines , , , and 

, where is the trapezoidal region 

with vertices , , , and 

22. , where is the region in the first 
quadrant bounded by the ellipse 

23. , where is given by the inequality

24. Let be continuous on and let be the triangular
region with vertices , , and . Show that

yy
R

 f �x � y� dA � y1

0
 uf �u� du

�0, 1��1, 0��0, 0�
R�0, 1�f

� x � � � y � � 1RxxR e x�y dA

9x 2 � 4y 2 � 1
RxxR sin�9x 2 � 4y 2 � dA

�0, 1��0, 2��2, 0��1, 0�

Ryy
R

 cos
 y � x

y � x� dA21.

x � y � 3x � y � 0x � y � 2x � y � 0
Rxx

R
�x � y�e x2�y2

 dA

3x � y � 8
3x � y � 1x � 2y � 4x � 2y � 0

Ryy
R

x � 2y

3x � y
 dA

z
k

c � 6356a � b � 6378

z � cwy � bvx � au
x 2	a 2 � y 2	b 2 � z2	c 2 � 1

Exxx
E
 dV

R

v � xy 2u � xyxy 2 � 2xy 2 � 1xy � 2xy � 1
RxxR y 2 dA1–6 Find the Jacobian of the transformation.

1. ,

2. ,

3. ,

4. ,

5. , ,

6. , ,

7–10 Find the image of the set under the given transformation.

;

8. is the square bounded by the lines , , ,
; ,

9. is the triangular region with vertices , , ;
,

10. is the disk given by ; ,

11–16 Use the given transformation to evaluate the integral.

11. , where is the triangular region with
vertices , , and ; ,

12. , where is the parallelogram with 
vertices , , , and ;

,

, where is the region bounded by the ellipse 
; ,

14. , where is the region bounded 
by the ellipse ;

,

15. , where is the region in the first quadrant bounded
by the lines and and the hyperbolas ,

; , y � vx � u	vxy � 3
xy � 1y � 3xy � x

RxxR  xy dA

y � s2 u � s2	3 vx � s2 u � s2	3 v
x 2 � xy � y 2 � 2

RxxR �x 2 � xy � y 2 � dA

y � 3vx � 2u9x 2 � 4y 2 � 36
RxxR x 2 dA13.

y � 1
4�v � 3u�x � 1

4�u � v�
�1, 5��3, �1��1, �3���1, 3�

RxxR �4x � 8y� dA

y � u � 2vx � 2u � v�1, 2��2, 1��0, 0�
RxxR �x � 3y� dA

y � bvx � auu 2 � v2 � 1S

y � vx � u2
�0, 1��1, 1��0, 0�S

y � u�1 � v 2 �x � vv � 1
v � 0u � 1u � 0S

x � 2u � 3v, y � u � v
S � ��u, v� � 0 � u � 3, 0 � v � 2�7.

S

z � u � v 2y � w � u 2x � v � w 2

z � w	uy � v	wx � u	v

y � es�tx � es�t

y � er cos �x � e�r sin �

y � u	vx � uv

y � u � 3vx � 5u � v
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