
16 MULTIPLE INTEGRALS ET 15

16.1 Double Integrals over Rectangles ET 15.1

1. (a) The subrectangles are shown in the gure.

The surface is the graph of ( ) = and = 4, so we estimate
3

=1

2

=1

( )

= (2 2) + (2 4) + (4 2) + (4 4) + (6 2) + (6 4)

= 4(4) + 8(4) + 8(4) + 16(4) + 12(4) + 24(4) = 288

(b)
3

= 1

2

=1

= (1 1) + (1 3) + (3 1) + (3 3) + (5 1) + (5 3)

= 1(4) + 3(4) + 3(4) + 9(4) + 5(4) + 15(4) = 144

3. (a) The subrectangles are shown in the gure. Since = 2 4, we estimate

sin( + )
2

=1

2

=1

= (0 0) + 0
2

+
2 0 + 2 2

= 0
2

4
+ 1

2

4
+ 1

2

4
+ 0

2

4
=

2

2
4 935

(b) sin( + )
2

=1

2

=1

( )

=
4 4

+
4

3
4

+ 3
4 4

+ 3
4

3
4

= 1
2

4
+ 0

2

4
+ 0

2

4
+ ( 1)

2

4
= 0

5. (a) Each subrectangle and its midpoint are shown in the gure. The area of each

subrectangle is = 2, so we evaluate at each midpoint and estimate

( )
2

=1

2

=1

= (1 5 1) + (1 5 3)

+ (2 5 1) + (2 5 3)

= 1(2) + ( 8)(2) + 5(2) + ( 1)(2) = 6
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224 ¤ CHAPTER 16 MULTIPLE INTEGRALS ET CHAPTER 15

(b) The subrectangles are shown in the gure. In each subrectangle, the sample point

farthest from the origin is the upper right corner, and the area of each subrectangle

is = 1
2
. Thus we estimate

( )
4

= 1

4

= 1

( )

= (1 5 1) + (1 5 2) + (1 5 3) + (1 5 4)

+ (2 1) + (2 2) + (2 3) + (2 4)

+ (2 5 1) + (2 5 2) + (2 5 3) + (2 5 4)

+ (3 1) + (3 2) + (3 3) + (3 4)

= 1 1
2
+ ( 4) 1

2
+ ( 8) 1

2
+ ( 6) 1

2
+ 3 1

2
+ 0 1

2
+ ( 5) 1

2
+ ( 8) 1

2

+ 5 1
2
+ 3 1

2
+ ( 1) 1

2
+ ( 4) 1

2
+ 8 1

2
+ 6 1

2
+ 3 1

2
+ 0 1

2

= 3 5

7. The values of ( ) = 52 2 2 get smaller as we move farther from the origin, so on any of the subrectangles in the

problem, the function will have its largest value at the lower left corner of the subrectangle and its smallest value at the upper

right corner, and any other value will lie between these two. So using these subrectangles we have . (Note that this

is true no matter how is divided into subrectangles.)

9. (a) With = = 2, we have = 4. Using the contour map to estimate the value of at the center of each subrectangle,

we have

( )
2

= 1

2

=1

= [ (1 1) + (1 3) + (3 1) + (3 3)] 4(27 + 4 + 14 + 17) = 248

(b) ave =
1
( )

( ) 1
16
(248) = 15 5

11. = 3 0, so we can interpret the integral as the volume of the solid that lies below the plane = 3 and above the

rectangle [ 2 2]× [1 6]. is a rectangular solid, thus 3 = 4 · 5 · 3 = 60.

13. = ( ) = 4 2 0 for 0 1. Thus the integral represents the volume of that

part of the rectangular solid [0 1]× [0 1]× [0 4] which lies below the plane = 4 2 .

So

(4 2 ) = (1)(1)(2) + 1
2 (1)(1)(2) = 3



SECTION 16.2 ITERATED INTEGRALS ET SECTION 15.2 ¤ 225

15. To calculate the estimates using a programmable calculator, we can use an algorithm

similar to that of Exercise 5.1.7 [ET 5.1.7]. In Maple, we can de ne the function

( ) = 1 + (calling it f), load the student package, and then use the

command

middlesum(middlesum(f,x=0..1,m),

y=0..1,m);

to get the estimate with = 2 squares of equal size. Mathematica has no special

Riemann sum command, but we can de ne f and then use nested Sum commands to

calculate the estimates.

estimate

1 1 141606

4 1 143191

16 1 143535

64 1 143617

256 1 143637

1024 1 143642

17. If we divide into subrectangles,
=1 =1

for any choice of sample points .

But = always and
=1 =1

= area of = ( )( ). Thus, no matter how we choose the sample

points,
=1 =1

=
=1 =1

= ( )( ) and so

= lim
=1 =1

= lim
=1 =1

= lim ( )( ) = ( )( ).

16.2 Iterated Integrals ET 15.2

1. 5

0
12 2 3 = 12

3

3
3

=5

=0

= 4 3 3 =5

=0
= 4(5)3 3 4(0)3 3 = 500 3,

1

0
12 2 3 = 12 2

4

4

=1

=0

= 3 2 4 =1

=0
= 3 2(1)4 3 2(0)4 = 3 2

3. 3

1

1

0
(1 + 4 ) =

3

1
+ 2 2 =1

=0
=

3

1
(1 + 2 ) = + 2 3

1
= (3 + 9) (1 + 1) = 10

5. 2

0

2

0
sin =

2

0

2

0
sin [as in Example 5] =

2

2

2

0

cos
2

0
= (2 0)(0 + 1) = 2

7. 2

0

1

0
(2 + )8 =

2

0

1

2

(2 + )9

9

=1

=0

[substitute = 2 + = 1
2

]

=
1

18

2

0

[(2 + )9 (0 + )9] =
1

18

(2 + )10

10

10

10

2

0

= 1
180
[(410 210) (210 010)] = 1,046,528

180
= 261,632

45

9.
4

1

2

1

+ =
4

1

ln | |+ 1 · 1
2

2
=2

=1

=
4

1

ln 2 +
3

2
= 1

2
2 ln 2 + 3

2
ln | | 4

1

= 8 ln 2 + 3
2
ln 4 1

2
ln 2 = 15

2
ln 2 + 3 ln 41 2 = 21

2
ln 2
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226 ¤ CHAPTER 16 MULTIPLE INTEGRALS ET CHAPTER 15

11. 1

0

1

0
( )5 =

1

0
1
6 ( )6

=1

=0
= 1

6

1

0
(1 )6 (0 )6

= 1
6

1

0
(1 )6 6 = 1

6
1
7
(1 )7 1

7
7 1

0

= 1
42
[(0 + 1) (1 + 0)] = 0

13. 2

0 0
sin2 =

2

0 0
sin2 [as in Example 5] = 2

0 0
1
2
(1 cos 2 )

= 1
2

2 2

0
· 1
2

1
2
sin 2

0
= (2 0) · 1

2
1
2
sin 2 0 1

2
sin 0

= 2 · 12 [( 0) (0 0)] =

15. (6 2 3 5 4) =
3

0

1

0
(6 2 3 5 4) =

3

0
3
2

2 4 5 =1

=0
=

3

0
3
2

2 1

= 1
2

3 3

0
= 27

2
3 = 21

2

17.
2

2 + 1
=

1

0

3

3

2

2 + 1
=

1

0
2 + 1

3

3

2 =
1

2
ln( 2 + 1)

1

0

1

3
3

3

3

= 1
2
(ln 2 ln 1) · 1

3
(27 + 27) = 9 ln 2

19. 6

0

3

0
sin( + )

=
6

0
cos( + )

= 3

=0
=

6

0
cos cos +

3

= sin sin + 3

6

0

6

0
sin sin +

3
[by integrating by parts separately for each term]

=
6

1
2

1 cos + cos +
3

6

0
=

12
3
2
+ 0 1 + 1

2
= 3 1

2 12

21.
2

=
2

0

1

0

2

=
2

0
1
2

2 =1

=0
= 1

2

2

0
( 1) = 1

2

2

0

= 1
2
[( 2 2) (1 0)] = 1

2
( 2 3)

23. = ( ) = 4 2 0 for 0 1 and 0 1. So the solid

is the region in the rst octant which lies below the plane = 4 2

and above [0 1]× [0 1].

25. = (12 3 2 ) =
3

2

1

0
(12 3 2 ) =

3

2
12 3

2
2 2

=1

=0

=
3

2
21
2

2 = 21
2

2 3

2
= 95

2

27. =
2

2

1

1
1 1

4
2 1

9
2 = 4

2

0

1

0
1 1

4
2 1

9
2

= 4
2

0
1
12

3 1
9

2 = 1

= 0
= 4

2

0
11
12

1
9

2 = 4 11
12

1
27

3 2

0
= 4 · 83

54
= 166

27
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29. Here we need the volume of the solid lying under the surface = sec2 and above the rectangle = [0 2]× [0 4] in the

-plane.

=
2

0

4

0
sec2 =

2

0

4

0
sec2 = 1

2
2 2

0
tan

4

0

= (2 0)(tan
4

tan 0) = 2(1 0) = 2

31. The solid lies below the surface = 2 + 2 + ( 2)2 and above the plane = 1 for 1 1, 0 4. The volume

of the solid is the difference in volumes between the solid that lies under = 2 + 2 + ( 2)2 over the rectangle

= [ 1 1]× [0 4] and the solid that lies under = 1 over .

=
4

0

1

1
[2 + 2 + ( 2)2]

4

0

1

1
(1) =

4

0
2 + 1

3
3 + ( 2)2

=1

= 1

1

1

4

0

=
4

0
(2 + 1

3
+ ( 2)2) ( 2 1

3
( 2)2) [ ]1 1 [ ]

4
0

=
4

0
14
3
+ 2( 2)2 [1 ( 1)][4 0] = 14

3
+ 2

3
( 2)3

4

0
(2)(4)

= 56
3
+ 16

3
0 16

3
8 = 88

3
8 = 64

3

33. In Maple, we can calculate the integral by de ning the integrand as f

and then using the command int(int(f,x=0..1),y=0..1);.

In Mathematica, we can use the command

Integrate[f,{x,0,1},{y,0,1}]

We nd that 5 3 = 21 57 0 0839. We can use plot3d

(in Maple) or Plot3D (in Mathematica) to graph the function.

35. is the rectangle [ 1 1] × [0 5]. Thus, ( ) = 2 · 5 = 10 and

ave =
1

( )
( ) = 1

10

5

0

1

1
2 = 1

10

5

0
1
3

3 = 1

= 1
= 1

10

5

0
2
3

= 1
10

1
3

2 5

0
= 5

6
.

37. Let ( ) =
( + )3

. Then a CAS gives 1

0

1

0
( ) = 1

2
and 1

0

1

0
( ) = 1

2
.

To explain the seeming violation of Fubini’s Theorem, note that has an in nite discontinuity at (0 0) and thus does not

satisfy the conditions of Fubini’s Theorem. In fact, both iterated integrals involve improper integrals which diverge at their

lower limits of integration.

16.3 Double Integrals over General Regions ET 15.3

1. 4

0 0
2 =

4

0
1
2

2 2 =

=0
=

4

0
1
2

2[( )2 02] = 1
2

4

0
3 = 1

2
1
4

4 4

0
= 1

2 (64 0) = 32

3. 1

0 2(1 + 2 ) =
1

0
+ 2 =

= 2 =
1

0
+ 2 2 ( 2)2

=
1

0
( 4) = 1

2
2 1

5
5 1

0
= 1

2
1
5

0 + 0 = 3
10

5. 2

0

cos

0
sin =

2

0
sin =cos

=0
=

2

0
(cos ) sin = sin 2

0
= sin( 2) 0 = 1
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7. 2 =
1

1 2
2 =

1

1
2 =

= 2
=

1

1
2 [ ( 2)]

=
1

1
(2 3 + 2 2) = 1

2
4 + 2

3
3 1

1
= 1

2
+ 2

3
1
2
+ 2

3
= 4

3

9. =
0

sin

0
=

0
[ ] =sin=0 =

0
sin

integrate by parts
with = = sin

= cos + sin
0
= cos + sin + 0 sin 0 =

11. 2 =
4

0 0
2 =

4

0

=

=0
=

4

0

2

= 1
2

2 1
2

2
4

0
= 1

2
16 8 1

2
+ 0 = 1

2
16 17

2

13. 1

0

2

0
cos =

1

0
sin

= 2

=0
=

1

0
sin 2 = 1

2
cos 2 1

0
= 1

2
(1 cos 1)

15. 2

1

2 1

2

3 =
2

1

3
=2 1

=2
=

2

1

[(2 1) (2 )] 3

=
2

1
(3 4 3 3) = 3

5
5 3

4
4 2

1

= 96
5

12 3
5
+ 3

4
= 147

20

17. 2

2

4 2

4 2

(2 )

=
2

2

2 1
2

2
= 4 2

= 4 2

=
2

2
2 4 2 1

2
4 2 + 2 4 2 + 1

2
4 2

=
2

2
4 4 2 = 4

3
4 2 3 2 2

2
= 0

[Or, note that 4 4 2 is an odd function, so 2

2
4 4 2 = 0.]

19. =
1

0 4( + 2 )

=
1

0
+ 2 =

= 4 =
1

0
(2 2 5 8)

= 2
3

3 1
6

6 1
9

9 1

0
= 2

3
1
6

1
9
= 7

18

21. =
2

1

7 3

1
=

2

1
1
2

2 =7 3

=1

= 1
2

2

1
(48 42 2 + 9 3)

= 1
2
24 2 14 3 + 9

4
4 2

1
= 31

8
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23. =
2

0

3 3
2

0
(6 3 2 )

=
2

0
6 3 2 = 3 3

2
=0

=
2

0
6(3 3

2
) 3 (3 3

2
) (3 3

2
)2

=
2

0
9
4

2 9 + 9 = 3
4

3 9
2

2 + 9
2

0
= 6 0 = 6

25.

=
2

2

4
2

2

=
2

2
2 =4

= 2 =
2

2
(4 2 4)

= 4
3

3 1
5

5 2

2
= 32

3
32
5 +

32
3

32
5 =

128
15

27.

=
1

0

1 2

0

=
1

0

2

2

= 1 2

=0

=
1

0

1 2

2
= 1

2
1
3

3 1

0
= 1

3

29. From the graph, it appears that the two curves intersect at = 0 and

at 1 213. Thus the desired integral is

1 213

0

3 2

4 =
1 213

0

=3 2

= 4

=
1 213

0
(3 2 3 5) = 3 1

4
4 1

6
6 1 213

0

0 713

31. The two bounding curves = 1 2 and = 2 1 intersect at (±1 0) with 1 2 2 1 on [ 1 1]. Within this

region, the plane = 2 + 2 + 10 is above the plane = 2 , so

=
1

1

1 2

2 1
(2 + 2 + 10)

1

1

1 2

2 1
(2 )

=
1

1

1 2

2 1
(2 + 2 + 10 (2 ))

=
1

1

1 2

2 1
(3 + 3 + 8) =

1

1
3 + 3

2
2 + 8

=1 2

= 2 1

=
1

1
3 (1 2) + 3

2
(1 2)2 + 8(1 2) 3 ( 2 1) 3

2
( 2 1)2 8( 2 1)

=
1

1
( 6 3 16 2 + 6 + 16) = 3

2
4 16

3
3 + 3 2 + 16

1

1

= 3
2

16
3
+ 3 + 16 + 3

2
16
3

3 + 16 = 64
3
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33. The solid lies below the plane = 1

or + + = 1 and above the region

= {( ) | 0 1 0 1 }
in the -plane. The solid is a tetrahedron.

35. The two bounding curves = 3 and = 2 + intersect at the origin and at = 2, with 2 + 3 on (0 2).

Using a CAS, we nd that the volume is

=
2

0

2 +

3

=
2

0

2 +

3

( 3 4 + 2) =
13,984,735,616
14,549,535

37. The two surfaces intersect in the circle 2 + 2 = 1, = 0 and the region of integration is the disk : 2 + 2 1.

Using a CAS, the volume is (1 2 2) =
1

1

1 2

1 2

(1 2 2) =
2
.

39. Because the region of integration is

= {( ) | 0 0 4} = ( ) | 2 4 0 2

we have 4

0 0
( ) = ( ) =

2

0

4
2 ( ) .

41. Because the region of integration is

= ( ) | 9 2 9 2 0 3

= ( ) | 0 9 2 3 3

we have
3

0

9 2

9 2

( ) = ( )

=
3

3

9 2

0

( )

43. Because the region of integration is

= {( ) | 0 ln , 1 2} = {( ) | 2, 0 ln 2}
we have

2

1

ln

0

( ) = ( ) =
ln 2

0

2

( )

45.
1

0

3

3

2

=
3

0

3

0

2

=
3

0

2 = 3

=0

=
3

0 3

2

= 1
6

2 3

0
=

9 1

6
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47. 4

0

2 1
3 + 1

=
2

0

2

0

1
3 + 1

=
2

0

1
3 + 1

= 2

=0
=

2

0

2

3 + 1

= 1
3
ln 3 + 1

2

0
= 1

3
(ln 9 ln 1) = 1

3
ln 9

49.
1

0

2

arcsin

cos 1 + cos2

=
2

0

sin

0
cos 1 + cos2

=
2

0
cos 1 + cos2

=sin

=0

=
2

0
cos 1 + cos2 sin

Let = cos , = sin ,
= ( sin )

=
0

1
1 + 2 = 1

3
1 + 2 3 2 0

1

= 1
3

8 1 = 1
3
2 2 1

51. = {( ) | 0 1, + 1 1} {( ) | 1 0, + 1 1}
{( ) | 0 1, 1 1} {( ) | 1 0, 1 1}, all type I.

2 =
1

0

1

1

2 +
0

1

1

+ 1

2 +
1

0

1

1

2 +
0

1

1

1

2

= 4
1

0

1

1

2 [by symmetry of the regions and because ( ) = 2 0]

= 4
1

0
3 = 4 1

4
4 1

0
= 1

53. Here = ( ) | 2 + 2 1
4

0 0 , and 0 ( 2 + 2)2 1
4

2 1
16

( 2 + 2)2 0 so
1 16 ( 2+ 2)2 0 = 1 since is an increasing function. We have ( ) = 1

4
1
2

2
=

16
, so by Property 11,

1 16 ( ) ( 2+ 2)2 1 · ( )
16

1 16 ( 2+ 2)2

16
or we can say

0 1844 ( 2+ 2)2 0 1964. (We have rounded the lower bound down and the upper bound up to preserve the

inequalities.)

55. The average value of a function of two variables de ned on a rectangle was

de ned in Section 16.1 [ET 15.1] as ave =
1
( )

( ) . Extending

this de nition to general regions , we have ave =
1
( )

( ) .

Here = {( ) | 0 1 0 3 }, so ( ) = 1
2
(1)(3) = 3

2
and

ave =
1
( )

( ) = 1
3 2

1

0

3

0

= 2
3

1

0
1
2

2 =3

=0
= 1

3

1

0
9 3 = 3

4
4 1

0
= 3

4

57. Since ( ) , ( ) by (8)

1 ( ) 1 by (7) ( ) ( ) ( ) by (10).
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59. ( 2 tan + 3 + 4) = 2 tan + 3 + 4 . But 2 tan is an odd function of and is

symmetric with respect to the -axis, so 2 tan = 0. Similarly, 3 is an odd function of and is symmetric with

respect to the -axis, so 3 = 0. Thus

( 2 tan + 3 + 4) = 4 = 4(area of ) = 4 · 2
2
= 8

61. Since 1 2 2 0, we can interpret 1 2 2 as the volume of the solid that lies below the graph of

= 1 2 2 and above the region in the -plane. = 1 2 2 is equivalent to 2 + 2 + 2 = 1, 0

which meets the -plane in the circle 2 + 2 = 1, the boundary of . Thus, the solid is an upper hemisphere of radius 1

which has volume 1
2

4
3
(1)3 = 2

3
.

16.4 Double Integrals in Polar Coordinates ET 15.4

1. The region is more easily described by polar coordinates: = ( ) | 0 4, 0 3
2
.

Thus ( ) =
3 2

0

4

0
( cos sin ) .

3. The region is more easily described by rectangular coordinates: = ( ) | 1 1, 0 1
2
+ 1

2
.

Thus ( ) =
1

1

( +1) 2

0
( ) .

5. The integral 2 7

4
represents the area of the region

= {( ) | 4 7, 2 }, the lower half of a ring.
2 7

4
=

2 7

4

=
2 1

2
2 7

4
= · 1

2
(49 16) = 33

2

7. The disk can be described in polar coordinates as = {( ) | 0 3, 0 2 }. Then

=
2

0

3

0
( cos )( sin ) =

2

0
sin cos

3

0
3 = 1

2
sin2

2

0
1
4

4 3

0
= 0.

9. cos( 2 + 2) =
0

3

0
cos( 2) =

0

3

0
cos( 2)

=
0

1
2
sin( 2)

3

0
= · 1

2
(sin 9 sin 0) =

2
sin 9

11.
2 2

=
2

2

2

0

2

=
2

2

2

0

2

=
2

2
1
2

2 2

0
= 1

2
( 4 0) =

2
(1 4)

13. is the region shown in the gure, and can be described

by = {( ) | 0 4 1 2}. Thus
arctan( ) =

4

0

2

1
arctan(tan ) since = tan .

Also, arctan(tan ) = for 0 4, so the integral becomes

4

0

2

1
=

4

0

2

1
= 1

2
2 4

0
1
2

2 2

1
=

2

32
· 3
2
= 3

64
2.


