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39. lim
( ) (0 0)

3 + 3

2 + 2
= lim

0+

( cos )3 + ( sin )3

2
= lim

0+
( cos3 + sin3 ) = 0

41. lim
( ) (0 0)

2 2

1
2 + 2

= lim
0+

2

1
2

= lim
0+

2

( 2 )

2
[using l’Hospital’s Rule]

= lim
0+

2

= 0 = 1

43. ( ) =

sin( ) if ( ) 6= (0 0)

1 if ( ) = (0 0)

From the graph, it appears that is continuous everywhere. We know

is continuous on R2 and sin is continuous everywhere, so

sin( ) is continuous on R2 and sin( ) is continuous on R2

except possibly where = 0. To show that is continuous at those points, consider any point ( ) in R2 where = 0.

Because is continuous, = 0 as ( ) ( ). If we let = , then 0 as ( ) ( ) and

lim
( ) ( )

sin( )
= lim

0

sin( )
= 1 by Equation 3.4.2 [ET 3.3.2]. Thus lim

( ) ( )
( ) = ( ) and is continuous

on R2.

45. Since |x a|2 = |x|2 + |a|2 2 |x| |a| cos |x|2 + |a|2 2 |x| |a| = (|x| |a|)2, we have |x| |a| |x a|. Let
0 be given and set = . Then if 0 |x a| , |x| |a| |x a| = . Hence limx a |x| = |a| and

(x) = |x| is continuous on R .

15.3 Partial Derivatives ET 14.3

1. (a) represents the rate of change of when we x and and consider as a function of the single variable , which

describes how quickly the temperature changes when longitude changes but latitude and time are constant.

represents the rate of change of when we x and and consider as a function of , which describes how quickly the

temperature changes when latitude changes but longitude and time are constant. represents the rate of change of

when we x and and consider as a function of , which describes how quickly the temperature changes over time for

a constant longitude and latitude.

(b) (158 21 9) represents the rate of change of temperature at longitude 158 W, latitude 21 N at 9:00 AM when only

longitude varies. Since the air is warmer to the west than to the east, increasing longitude results in an increased air

temperature, so we would expect (158 21 9) to be positive. (158 21 9) represents the rate of change of temperature

at the same time and location when only latitude varies. Since the air is warmer to the south and cooler to the north,

increasing latitude results in a decreased air temperature, so we would expect (158 21 9) to be negative. (158 21 9)

represents the rate of change of temperature at the same time and location when only time varies. Since typically air
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temperature increases from the morning to the afternoon as the sun warms it, we would expect (158 21 9) to be

positive.

3. (a) By De nition 4, ( 15 30) = lim
0

( 15 + 30) ( 15 30) , which we can approximate by considering = 5

and = 5 and using the values given in the table:

( 15 30)
( 10 30) ( 15 30)

5
=

20 ( 26)

5
=
6

5
= 1 2,

( 15 30)
( 20 30) ( 15 30)

5
=

33 ( 26)

5
=

7

5
= 1 4. Averaging these values, we estimate

( 15 30) to be approximately 1 3. Thus, when the actual temperature is 15 C and the wind speed is 30 km h, the

apparent temperature rises by about 1 3 C for every degree that the actual temperature rises.

Similarly, ( 15 30) = lim
0

( 15 30 + ) ( 15 30) which we can approximate by considering = 10 and

= 10: ( 15 30)
( 15 40) ( 15 30)

10
=

27 ( 26)

10
=

1

10
= 0 1,

( 15 30)
( 15 20) ( 15 30)

10
=

24 ( 26)

10
=

2

10
= 0 2. Averaging these values, we estimate

( 15 30) to be approximately 0 15. Thus, when the actual temperature is 15 C and the wind speed is 30 km h, the

apparent temperature decreases by about 0 15 C for every km h that the wind speed increases.

(b) For a xed wind speed , the values of the wind-chill index increase as temperature increases (look at a column of

the table), so is positive. For a xed temperature , the values of decrease (or remain constant) as increases

(look at a row of the table), so is negative (or perhaps 0).

(c) For xed values of , the function values ( ) appear to become constant (or nearly constant) as increases, so the

corresponding rate of change is 0 or near 0 as increases. This suggests that lim ( ) = 0.

5. (a) If we start at (1 2) and move in the positive -direction, the graph of increases. Thus (1 2) is positive.

(b) If we start at (1 2) and move in the positive -direction, the graph of decreases. Thus (1 2) is negative.

7. (a) = ( ), so is the rate of change of in the -direction. is negative at ( 1 2) and if we move in the

positive -direction, the surface becomes less steep. Thus the values of are increasing and ( 1 2) is positive.

(b) is the rate of change of in the -direction. is negative at ( 1 2) and if we move in the positive -direction, the

surface becomes steeper. Thus the values of are decreasing, and ( 1 2) is negative.

9. First of all, if we start at the point (3 3) and move in the positive -direction, we see that both and decrease, while

increases. Both and have a low point at about (3 1 5), while is 0 at this point. So is de nitely the graph of , and

one of and is the graph of . To see which is which, we start at the point ( 3 1 5) and move in the positive -direction.

traces out a line with negative slope, while traces out a parabola opening downward. This tells us that is the -derivative

of . So is the graph of , is the graph of , and is the graph of .
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11. ( ) = 16 4 2 2 ( ) = 8 and ( ) = 2 (1 2) = 8 and (1 2) = 4. The graph

of is the paraboloid = 16 4 2 2 and the vertical plane = 2 intersects it in the parabola = 12 4 2, = 2

(the curve 1 in the rst gure). The slope of the tangent line

to this parabola at (1 2 8) is (1 2) = 8. Similarly the

plane = 1 intersects the paraboloid in the parabola

= 12 2, = 1 (the curve 2 in the second gure) and

the slope of the tangent line at (1 2 8) is (1 2) = 4.

13. ( ) = 2 + 2 + 2 = 2 + 2 , = 2 + 2

Note that the traces of in planes parallel to the -plane are parabolas which open downward for 1 and upward for

1, and the traces of in these planes are straight lines, which have negative slopes for 1 and positive slopes for

1. The traces of in planes parallel to the -plane are parabolas which always open upward, and the traces of in

these planes are straight lines with positive slopes.

15. ( ) = 5 3 ( ) = 0 3 = 3 , ( ) = 5 4 3

17. ( ) = cos ( ) = ( sin ) ( ) = sin , ( ) = ( 1) cos = cos

19. = (2 + 3 )10 = 10(2 + 3 )9 · 2 = 20(2 + 3 )9, = 10(2 + 3 )9 · 3 = 30(2 + 3 )9

21. ( ) =
+

( ) =
(1)( + ) ( )(1)

( + )2
=

2

( + )2
,

( ) =
( 1)( + ) ( )(1)

( + )2
=

2

( + )2

23. = sin cos = cos cos , = sin sin

25. ( ) = ln( 2 + 2) ( ) = · 2
2 + 2

+ ln( 2 + 2) · 1 = 2 2

2 + 2
+ ln( 2 + 2),

( ) = · 2
2 + 2

+ 0 =
2
2 + 2
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27. = = · ( 2) + · 1 = = 1 , = · 1 =

29. ( ) = 5 2 3 4 ( ) = 10 3 4, ( ) = 15 2 2 4, ( ) = 20 2 3 3

31. = ln( + 2 + 3 ) =
1

+ 2 + 3
, =

2

+ 2 + 3
, =

3

+ 2 + 3

33. = sin 1( ) = sin 1( ), = · 1

1 ( )2
( )+ sin 1( ) · =

1 2 2
+ sin 1( ),

= · 1

1 ( )2
( ) =

2

1 2 2

35. ( ) = 2 tan( ) ( ) = 2 tan( ),

( ) = 2 · sec2( ) · + 2 tan( ) = 2 sec2( ) + 2 tan( ),

( ) = 2 tan( ), ( ) = 2 sec2( ) · = 2 2 sec2( )

37. = 2
1 +

2
2 + · · ·+ 2 . For each = 1, , , = 1

2
2
1 +

2
2 + · · ·+ 2 1 2

(2 ) =
2
1 +

2
2 + · · ·+ 2

.

39. ( ) = ln + 2 + 2

( ) =
1

+ 2 + 2
1 + 1

2
( 2 + 2) 1 2(2 ) =

1

+ 2 + 2
1 +

2 + 2
,

so (3 4) =
1

3 + 32 + 42
1 +

3

32 + 42
= 1

8
1 + 3

5
= 1

5
.

41. ( ) =
+ +

( ) =
1( + + ) (1)

( + + )2
=

+

( + + )2
,

so (2 1 1) =
2 + ( 1)

(2 + 1 + ( 1))2
=
1

4
.

43. ( ) = 2 3

( ) = lim
0

( + ) ( )
= lim

0

( + ) 2 ( + )3 ( 2 3 )

= lim
0

( 2 3 2 3 2)
= lim

0
( 2 3 2 3 2) = 2 3 2

( ) = lim
0

( + ) ( )
= lim

0

( + )2 3( + ) ( 2 3 )
= lim

0

(2 + 3)

= lim
0
(2 + 3) = 2 3

45. 2 + 2 + 2 = 3 ( 2 + 2 + 2) = (3 ) 2 + 0 + 2 = 3 + · 1

2 3 = 3 2 (2 3 ) = 3 2 , so =
3 2

2 3
.

( 2 + 2 + 2) = (3 ) 0 + 2 + 2 = 3 + · 1 2 3 = 3 2

(2 3 ) = 3 2 , so =
3 2

2 3
.
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47. = arctan( ) ( ) = (arctan( )) 1 =
1

1 + ( )2
·

1 =
1 + 2 2

+ 1 1 =
+ 1 + 2 2

1 + 2 2
, so =

1 + 2 2

1 + + 2 2
.

( ) = (arctan( )) 0 =
1

1 + ( )2
· + · 1

1 + 2 2
=

1 + 2 2
+ 1

1 + 2 2
=

+ 1 + 2 2

1 + 2 2
=

1 + + 2 2
.

49. (a) = ( ) + ( ) = 0( ), = 0( )

(b) = ( + ). Let = + . Then = = (1) = 0( ) = 0( + ),

= = (1) = 0( ) = 0( + ).

51. ( ) = 3 5 + 2 4 ( ) = 3 2 5 + 8 3 , ( ) = 5 3 4 + 2 4. Then ( ) = 6 5 + 24 2 ,

( ) = 15 2 4 + 8 3, ( ) = 15 2 4 + 8 3, and ( ) = 20 3 3.

53. = 2 + 2 = 1
2
( 2 + 2) 1 2 · 2 =

2 + 2
, = 1

2
( 2 + 2) 1 2 · 2 =

2 + 2
. Then

=
1 · 2 + 2 · 1

2
( 2 + 2) 1 2(2 )

2 + 2
2 =

2 + 2 2 2 + 2

2 + 2
=

2 + 2 2

( 2 + 2)3 2
=

2

( 2 + 2)3 2
,

= 1
2

2 + 2 3 2
(2 ) =

( 2 + 2)3 2
, = 1

2
2 + 2 3 2

(2 ) =
( 2 + 2)3 2

,

=
1 · 2 + 2 · 1

2
( 2 + 2) 1 2(2 )

2 + 2
2 =

2 + 2 2 2 + 2

2 + 2
=

2 + 2 2

( 2 + 2)3 2
=

2

( 2 + 2)3 2
.

55. = arctan
+

1

=
1

1 + +
1

2 ·
(1)(1 ) ( + )( )

(1 )2
=

1 + 2

(1 )2 + ( + )2
=

1 + 2

1 + 2 + 2 + 2 2

=
1 + 2

(1 + 2)(1 + 2)
=

1

1 + 2

=
1

1 + +
1

2 ·
(1)(1 ) ( + )( )

(1 )2
=

1 + 2

(1 )2 + ( + )2
=

1 + 2

(1 + 2)(1 + 2)
=

1

1 + 2
.

Then = (1 + 2) 2 · 2 =
2

(1 + 2)2
, = 0, = 0, = (1 + 2) 2 · 2 =

2

(1 + 2)2
.

57. = sin( + 2 ) = · cos( + 2 )(1) + sin( + 2 ) · 1 = cos( + 2 ) + sin( + 2 ),

= ( sin( + 2 )(2)) + cos( + 2 )(2) = 2 cos( + 2 ) 2 sin( + 2 ),

= cos ( + 2 ) (2) = 2 cos( + 2 ),

= 2 · ( sin( + 2 )(1)) + cos ( + 2 ) · 2 = 2 cos( + 2 ) 2 sin( + 2 ). Thus = .
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59. = ln 2 + 2 = ln( 2 + 2)1 2 = 1
2 ln(

2 + 2) =
1

2

1
2 + 2

· 2 =
2 + 2

,

= ( 1)( 2 + 2) 2(2 ) =
2

( 2 + 2)2
and =

1

2

1
2 + 2

· 2 =
2 + 2

,

= ( 1)( 2 + 2) 2(2 ) =
2

( 2 + 2)2
. Thus = .

61. ( ) = 3 4 + 3 2 = 3 4 + 3 2 2, = 6 2, = 12 and

= 12 3 + 2 3 , = 36 2 + 2 3, = 72 .

63. ( ) = cos(4 + 3 + 2 )

= sin(4 + 3 + 2 )(4) = 4 sin(4 + 3 + 2 ), = 4 cos(4 + 3 + 2 )(3) = 12 cos(4 + 3 + 2 ),

= 12( sin(4 + 3 + 2 ))(2) = 24 sin(4 + 3 + 2 ) and

= sin(4 + 3 + 2 )(3) = 3 sin(4 + 3 + 2 ),

= 3 cos(4 + 3 + 2 )(2) = 6 cos(4 + 3 + 2 ), = 6( sin(4 + 3 + 2 ))(2) = 12 sin(4 + 3 + 2 ).

65. = sin = cos + sin · ( ) = (cos + sin ),

2

= (sin ) + (cos + sin ) ( ) = (sin + cos + sin ),

3

2
= ( sin ) + (sin + cos + sin ) · ( ) = (2 sin + cos + sin ).

67. =
+ 2

= ( + 2 ) 1 = ( + 2 ) 1,
2

= ( + 2 ) 2(1) = ( + 2 ) 2,

3

= ( 2)( + 2 ) 3(2) = 4( + 2 ) 3 =
4

( + 2 )3
and = ( 1)( + 2 ) 2(1) = ( + 2 ) 2,

2

= ( + 2 ) 2,
3

2
= 0.

69. By De nition 4, (3 2) = lim
0

(3 + 2) (3 2) which we can approximate by considering = 0 5 and = 0 5:

(3 2)
(3 5 2) (3 2)

0 5
=
22 4 17 5

0 5
= 9 8, (3 2)

(2 5 2) (3 2)

0 5
=
10 2 17 5

0 5
= 14 6. Averaging

these values, we estimate (3 2) to be approximately 12 2. Similarly, (3 2 2) = lim
0

(3 + 2 2) (3 2 2) which

we can approximate by considering = 0 5 and = 0 5: (3 2 2)
(3 5 2 2) (3 2 2)

0 5
=
26 1 15 9

0 5
= 20 4,

(3 2 2)
(2 5 2 2) (3 2 2)

0 5
=
9 3 15 9

0 5
= 13 2. Averaging these values, we have (3 2 2) 16 8.

To estimate (3 2), we rst need an estimate for (3 1 8):

(3 1 8)
(3 5 1 8) (3 1 8)

0 5
=
20 0 18 1

0 5
= 3 8, (3 1 8)

(2 5 1 8) (3 1 8)

0 5
=
12 5 18 1

0 5
= 11 2.

Averaging these values, we get (3 1 8) 7 5. Now ( ) = [ ( )] and ( ) is itself a function of two
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variables, so De nition 4 says that ( ) = [ ( )] = lim
0

( + ) ( )

(3 2) = lim
0

(3 2 + ) (3 2) .

We can estimate this value using our previous work with = 0 2 and = 0 2:

(3 2)
(3 2 2) (3 2)

0 2
=
16 8 12 2

0 2
= 23, (3 2)

(3 1 8) (3 2)

0 2
=
7 5 12 2

0 2
= 23 5.

Averaging these values, we estimate (3 2) to be approximately 23 25.

71. =
2 2

sin =
2 2

cos , = 2 2 2
sin , and = 2 2 2 2

sin .

Thus 2 = .

73. =
1

2 + 2 + 2
= 1

2
( 2 + 2 + 2) 3 2(2 ) = ( 2 + 2 + 2) 3 2 and

= ( 2 + 2 + 2) 3 2 3
2
( 2 + 2 + 2) 5 2(2 ) =

2 2 2 2

( 2 + 2 + 2)5 2
.

By symmetry, =
2 2 2 2

( 2 + 2 + 2)5 2
and =

2 2 2 2

( 2 + 2 + 2)5 2
.

Thus + + =
2 2 2 2 + 2 2 2 2 + 2 2 2 2

( 2 + 2 + 2)5 2
= 0.

75. Let = + , = . Then =
[ ( ) + ( )]

=
( )

+
( )

= 0( ) 0( ) and

=
[ 0( ) 0( )]

= [ 00( ) + 00( )] = 2[ 00( ) + 00( )]. Similarly, by using the Chain Rule we have

= 0( ) + 0( ) and = 00( ) + 00( ). Thus = 2 .

77. = ln( + ) =
+

and =
+

, so + =
+

+
+

=
+

+
= 1.

2

2
=

( + ) ( )

( + )2
=

+

( + )2
,

2

=
0 ( )

( + )2
=

+

( + )2
, and

2

2
=

( + ) ( )

( + )2
=

+

( + )2
. Thus

2

2

2

2

2 2

=
+

( + )2
·

+

( + )2

+

( + )2

2

=
( + )2

( + )4
( + )2

( + )4
= 0

79. If we x = 0 ( 0) is a function of a single variable , and = is a separable differential equation. Then

= = ln | | = ln | |+ ( 0), where ( 0) can depend on 0. Then

| | = ln| |+ ( 0), and since 0 and 0, we have = ln ( 0) = ( 0) ln = 1( 0) where

1( 0) =
( 0).

81. By the Chain Rule, taking the partial derivative of both sides with respect to 1 gives
1

1
=

[(1 1) + (1 2) + (1 3)]

1
or 2

1
= 2

1 . Thus
1
=

2

2
1

.
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83. By Exercise 82, = = , so = . Also, = = and = .

Since = , we have = · · = .

85. = 1
2

2, = ,
2

2
= . Thus ·

2

2
= 1

2
2 = .

87. ( ) = + 4 ( ) = 4 and ( ) = 3 ( ) = 3. Since and are continuous

everywhere but ( ) 6= ( ), Clairaut’s Theorem implies that such a function ( ) does not exist.

89. By the geometry of partial derivatives, the slope of the tangent line is (1 2). By implicit differentiation of

4 2 + 2 2 + 2 = 16, we get 8 + 2 ( ) = 0 = 4 , so when = 1 and = 2 we have

= 2. So the slope is (1 2) = 2. Thus the tangent line is given by 2 = 2( 1), = 2. Taking the

parameter to be = 1, we can write parametric equations for this line: = 1 + , = 2, = 2 2 .

91. By Clairaut’s Theorem, = ( ) = ( ) = = ( ) = ( ) = .

93. Let ( ) = ( 0) = ( 2) 3 2 0 = | | 3. But we are using the point (1 0), so near (1 0), ( ) = 2. Then

0( ) = 2 3 and 0(1) = 2, so using (1) we have (1 0) = 0(1) = 2.

95. (a) (b) For ( ) 6= (0 0),

( ) =
(3 2 3)( 2 + 2) ( 3 3)(2 )

( 2 + 2)2

=
4 + 4 2 3 5

( 2 + 2)2

and by symmetry ( ) =
5 4 3 2 4

( 2 + 2)2
.

(c) (0 0) = lim
0

( 0) (0 0)
= lim

0

(0 2) 0
= 0 and (0 0) = lim

0

(0 ) (0 0)
= 0.

(d) By (3), (0 0) = = lim
0

(0 ) (0 0)
= lim

0

( 5 0) 4

= 1 while by (2),

(0 0) = = lim
0

( 0) (0 0)
= lim

0

5 4

= 1.

(e) For ( ) 6= (0 0), we use a CAS to compute

( ) =
6 + 9 4 2 9 2 4 6

( 2 + 2)3

Now as ( ) (0 0) along the -axis, ( ) 1 while as

( ) (0 0) along the -axis, ( ) 1. Thus isn’t

continuous at (0 0) and Clairaut’s Theorem doesn’t apply, so there is

no contradiction. The graphs of and are identical except at the

origin, where we observe the discontinuity.



184 ¤ CHAPTER 15 PARTIAL DERIVATIVES ET CHAPTER 14

15.4 Tangent Planes and Linear Approximations ET 14.4

1. = ( ) = 4 2 2 + 2 ( ) = 8 , ( ) = 2 + 2, so ( 1 2) = 8, ( 1 2) = 2.

By Equation 2, an equation of the tangent plane is 4 = ( 1 2)[ ( 1)] + ( 1 2)( 2)

4 = 8( + 1) 2( 2) or = 8 2 .

3. = ( ) = ( ) = 1
2 ( ) 1 2 · = 1

2 , ( ) = 1
2 ( ) 1 2 · = 1

2 , so (1 1) = 1
2

and (1 1) = 1
2
. Thus an equation of the tangent plane is 1 = (1 1)( 1) + (1 1)( 1)

1 = 1
2
( 1) + 1

2
( 1) or + 2 = 0.

5. = ( ) = cos( ) = ( sin( )(1)) = sin( ),

= ( sin( )( 1)) + cos( ) = sin( ) + cos( ), so (2 2) = 2 sin(0) = 0,

(2 2) = 2 sin(0) + cos(0) = 1 and an equation of the tangent plane is 2 = 0( 2) + 1( 2) or = .

6. = ( ) =
2 2

( ) = 2
2 2

, ( ) = 2
2 2

, so (1 1) = 2, (1 1) = 2.

By Equation 2, an equation of the tangent plane is 1 = (1 1)( 1) + (1 1)[ ( 1)]

1 = 2( 1) + 2( + 1) or = 2 + 2 + 1.

7. = ( ) = 2 + + 3 2, so ( ) = 2 + (1 1) = 3, ( ) = + 6 (1 1) = 7 and an

equation of the tangent plane is 5 = 3( 1) + 7( 1) or = 3 + 7 5. After zooming in, the surface and the

tangent plane become almost indistinguishable. (Here, the tangent plane is below the surface.) If we zoom in farther, the

surface and the tangent plane will appear to coincide.

9. ( ) =
sin ( )

1 + 2 + 2
. A CAS gives ( ) =

sin ( ) + cos ( )

1 + 2 + 2

2 2 sin ( )

(1 + 2 + 2)2
and

( ) =
sin ( ) cos ( )

1 + 2 + 2

2 2 sin ( )

(1 + 2 + 2)2
. We use the CAS to evaluate these at (1 1), and then

substitute the results into Equation 2 to compute an equation of the tangent plane: = 1
3

1
3
. The surface and tangent

plane are shown in the rst graph below. After zooming in, the surface and the tangent plane become almost indistinguishable,
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as shown in the second graph. (Here, the tangent plane is shown with fewer traces than the surface.) If we zoom in farther, the

surface and the tangent plane will appear to coincide.

11. ( ) = . The partial derivatives are ( ) = and ( ) =
2

, so (1 4) = 2 and (1 4) = 1
4
. Both

and are continuous functions for 0, so by Theorem 8, is differentiable at (1 4). By Equation 3, the linearization of

at (1 4) is given by ( ) = (1 4) + (1 4)( 1) + (1 4)( 4) = 2 + 2( 1) + 1
4
( 4) = 2 + 1

4
1.

13. ( ) =
+

. The partial derivatives are ( ) =
1( + ) (1)

( + )2
= ( + )2 and

( ) = ( 1)( + ) 2 · 1 = ( + )2, so (2 1) = 1
9
and (2 1) = 2

9
. Both and are continuous

functions for 6= , so is differentiable at (2 1) by Theorem 8. The linearization of at (2 1) is given by

( ) = (2 1) + (2 1)( 2) + (2 1)( 1) = 2
3 +

1
9 ( 2) 2

9 ( 1) = 1
9

2
9 + 2

3 .

15. ( ) = cos . The partial derivatives are ( ) = ( ) cos = cos and

( ) = ( sin ) + (cos ) ( ) = (sin + cos ), so ( 0) = 0 and ( 0) = .

Both and are continuous functions, so is differentiable at ( 0), and the linearization of at ( 0) is

( ) = ( 0) + ( 0)( ) + ( 0)( 0) = 1 + 0( ) ( 0) = 1 .

17. Let ( ) =
2 + 3

4 + 1
. Then ( ) =

2

4 + 1
and ( ) = (2 + 3)( 1)(4 + 1) 2(4) =

8 12

(4 + 1)2
. Both and

are continuous functions for 6= 1
4
, so by Theorem 8, is differentiable at (0 0). We have (0 0) = 2, (0 0) = 12

and the linear approximation of at (0 0) is ( ) (0 0) + (0 0)( 0) + (0 0)( 0) = 3 + 2 12 .

19. ( ) = 20 2 7 2 ( ) =
20 2 7 2

and ( ) =
7

20 2 7 2
,

so (2 1) = 2
3
and (2 1) = 7

3
. Then the linear approximation of at (2 1) is given by

( ) (2 1) + (2 1)( 2) + (2 1)( 1) = 3 2
3
( 2) 7

3
( 1) = 2

3
7
3
+ 20

3
.

Thus (1 95 1 08) 2
3
(1 95) 7

3
(1 08) + 20

3
= 2 846̄.

21. ( ) = 2 + 2 + 2 ( ) =
2 + 2 + 2

, ( ) =
2 + 2 + 2

, and

( ) =
2 + 2 + 2

, so (3 2 6) = 3
7
, (3 2 6) = 2

7
, (3 2 6) = 6

7
. Then the linear approximation of at
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(3 2 6) is given by

( ) (3 2 6) + (3 2 6)( 3) + (3 2 6)( 2) + (3 2 6)( 6)

= 7 + 3
7
( 3) + 2

7
( 2) + 6

7
( 6) = 3

7
+ 2

7
+ 6

7

Thus (3 02)2 + (1 97)2 + (5 99)2 = (3 02 1 97 5 99) 3
7
(3 02) + 2

7
(1 97) + 6

7
(5 99) 6 9914.

23. From the table, (94 80) = 127. To estimate (94 80) and (94 80) we follow the procedure used in Section 15.3

[ET 14.3]. Since (94 80) = lim
0

(94 + 80) (94 80) , we approximate this quantity with = ±2 and use the

values given in the table:

(94 80)
(96 80) (94 80)

2
=
135 127

2
= 4, (94 80)

(92 80) (94 80)

2
=
119 127

2
= 4

Averaging these values gives (94 80) 4. Similarly, (94 80) = lim
0

(94 80 + ) (94 80) , so we use = ±5:

(94 80)
(94 85) (94 80)

5
=
132 127

5
= 1, (94 80)

(94 75) (94 80)

5
=
122 127

5
= 1

Averaging these values gives (94 80) 1. The linear approximation, then, is

( ) (94 80) + (94 80)( 94) + (94 80)( 80)

127 + 4( 94) + 1( 80) [or 4 + 329]

Thus when = 95 and = 78, (95 78) 127 + 4(95 94) + 1(78 80) = 129, so we estimate the heat index to be

approximately 129 F.

25. = 3 ln( 2) = + = 3 2 ln( 2) + 3 · 1
2
(2 ) = 3 2 ln( 2) +

2 3

27. = 5 3 = + = 5 4 3 + 3 5 2

29. = 2 cos = + + = 2 cos + 2 cos 2 sin

31. = = 0 05, = = 0 1, = 5 2 + 2, = 10 , = 2 . Thus when = 1 and = 2,

= (1 2) + (1 2) = (10)(0 05) + (4)(0 1) = 0 9 while

= (1 05 2 1) (1 2) = 5(1 05)2 + (2 1)2 5 4 = 0 9225.

33. = + = + and | | 0 1, | | 0 1. We use = 0 1, = 0 1 with = 30, = 24;

then the maximum error in the area is about = 24(0 1) + 30(0 1) = 5 4 cm2.

35. The volume of a can is = 2 and is an estimate of the amount of tin. Here = 2 + 2 , so put

= 0 04, = 0 08 (0 04 on top, 0 04 on bottom) and then = 2 (48)(0 04) + (16)(0 08) 16 08 cm3.

Thus the amount of tin is about 16 cm3.
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37. The area of the rectangle is = , and is an estimate of the area of paint in the stripe. Here = + ,

so with = = 3+3
12

= 1
2
, = (100) 1

2
+ (200) 1

2
= 150 ft2. Thus there are approximately 150 ft2 of paint

in the stripe.

39. First we nd
1
implicitly by taking partial derivatives of both sides with respect to 1:

1

1
=

[(1 1) + (1 2) + (1 3)]

1

2

1
= 2

1
1
=

2

2
1

. Then by symmetry,

2
=

2

2
2

,
3
=

2

2
3

. When 1 = 25, 2 = 40 and 3 = 50,
1
=
17

200
= 200

17
.

Since the possible error for each is 0 5%, the maximum error of is attained by setting = 0 005 . So

=
1

1 +
2

2 +
3

3 = (0 005)
2 1

1
+

1

2
+

1

3
= (0 005) = 1

17
0 059 .

41. The errors in measurement are at most 2%, so 0 02 and 0 02. The relative error in the calculated surface

area is

=
0 1091(0 425 0 425 1) 0 725 + 0 1091 0 425(0 725 0 725 1)

0 1091 0 425 0 725
= 0 425 + 0 725

To estimate the maximum relative error, we use = = 0 02 and = = 0 02

= 0 425 (0 02) + 0 725 (0 02) = 0 023. Thus the maximum percentage error is approximately 2 3%.

43. = ( + + ) ( ) = ( + )2 + ( + )2 ( 2 + 2)

= 2 + 2 + ( )2 + 2 + 2 + ( )2 2 2 = 2 + ( )2 + 2 + ( )2

But ( ) = 2 and ( ) = 2 and so = ( ) + ( ) + + , which is De nition 7

with 1 = and 2 = . Hence is differentiable.

45. To show that is continuous at ( ) we need to show that lim
( ) ( )

( ) = ( ) or

equivalently lim
( ) (0 0)

( + + ) = ( ). Since is differentiable at ( ),

( + + ) ( ) = = ( ) + ( ) + 1 + 2 , where 1 and 2 0 as

( ) (0 0). Thus ( + + ) = ( ) + ( ) + ( ) + 1 + 2 . Taking the limit of

both sides as ( ) (0 0) gives lim
( ) (0 0)

( + + ) = ( ). Thus is continuous at ( ).

15.5 The Chain Rule ET 14.5

1. = 2 + 2 + , = sin , = = + = (2 + ) cos + (2 + )

3. = 1 + 2 + 2, = ln , = cos

= + = 1
2
(1+ 2+ 2) 1 2(2 ) · 1 + 1

2
(1+ 2+ 2) 1 2(2 )( sin ) =

1

1 + 2 + 2
sin


