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3 3 3 < 0\3
0 0
im 2 Y _ fim (rcos)” + (rsinf) = lim (rcos® 0+ rsin®0) =0
(z,y)—(0,0) x? + y2 r—0t r2 r—0t
2 2 2 2
) e TV —1 . e =1 . e T (=2r) o o
o Son AR T U Ty [usingMHospitals Rule]
= lim —e " = - =1
r—0t
sin(zy) .
o if (a:,y) 7é (Oa O)
fle,y) = *¥
1 if (z,y) = (0,0)
2
From the graph, it appears that f is continuous everywhere. We know 1
xy is continuous on R? and sin ¢ is continuous everywhere, so . > ““A&;’.;gg'?:{,{l -

(zy)

. . . sin . .
sin(zy) is continuous on R? and ——=* is continuous on R? y 5
Y

except possibly where xy = 0. To show that f is continuous at those points, consider any point (a, b) in R? where ab = 0.

Because xy is continuous, xy — ab = 0 as (z,y) — (a,b). f we lett = zy, thent — 0 as (z,y) — (a,b) and

sin(zy) = lim % = 1 by Equation 3.4.2 [ET 3.3.2]. Thus l)im )f(ac, y) = f(a,b) and f is continuous

(@,y)—(asb)  TY t—0 z,y)—(a,
on R,
45. Since |x — a|®> = |x|* + |a]* — 2|x||a|cos 0 > |x|* + |a]* — 2|x| |a] = (|x| — |a]|)?, we have |[x| —|a|| < |x — al. Let
€ > 0 be given and set § = €. Then if 0 < |x —a| < 4, ||x| — |a|| < |x — a| < § = €. Hence limx . x| = |a| and
f (x) = |x] is continuous on R".
15.3 Partial Derivatives ET14.3

1.

(a) OT'/Ox represents the rate of change of 7" when we fix y and ¢ and consider 7" as a function of the single variable x, which
describes how quickly the temperature changes when longitude changes but latitude and time are constant. 9T"/9y
represents the rate of change of 7" when we fix x and ¢ and consider 7" as a function of y, which describes how quickly the
temperature changes when latitude changes but longitude and time are constant. 97"/t represents the rate of change of T°
when we fix « and y and consider 7" as a function of ¢, which describes how quickly the temperature changes over time for

a constant longitude and latitude.

(b) f(158,21,9) represents the rate of change of temperature at longitude 158°W, latitude 21°N at 9:00 am when only
longitude varies. Since the air is warmer to the west than to the east, increasing longitude results in an increased air
temperature, so we would expect f5 (158,21, 9) to be positive. f, (158,21, 9) represents the rate of change of temperature
at the same time and location when only latitude varies. Since the air is warmer to the south and cooler to the north,
increasing latitude results in a decreased air temperature, so we would expect f, (158,21, 9) to be negative. f+(158,21,9)

represents the rate of change of temperature at the same time and location when only time varies. Since typically air
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temperature increases from the morning to the afternoon as the sun warms it, we would expect f;(158,21,9) to be

positive.

F(=15+ h,30) — f(—15,30)

3. (a) By Definition 4, fr(—15,30) = }llin% , which we can approximate by considering h = 5

h
and h = —5 and using the values given in the table:
Fr(—15,30) ~ f(=10,30) — f(—15,30) _ —20- (—26) _6_ 12,
5 5 5
fr(—=15,30) ~ 1(=20,30) _5f(_15’30) = —33 _5()_26) = __57) = 1.4. Averaging these values, we estimate

fr(—15,30) to be approximately 1.3. Thus, when the actual temperature is —15°C and the wind speed is 30 km/h, the
apparent temperature rises by about 1.3°C for every degree that the actual temperature rises.

f(—=15,30 4 h) — f(—15,30)

Similarly, f,(—15,30) = }llir% which we can approximate by considering A~ = 10 and

h
_ ) _ f(=15,40) — f(—=15,30) =27 —(=26) —1
h = —10: f,(—15,30) ~ 0 = 0 =10 = 0.1,
fu(—15,30) =~ (=15, 20)7_10f(_15’ 30) s :1(0726) = %10 = —0.2. Averaging these values, we estimate

fu(—15,30) to be approximately —0.15. Thus, when the actual temperature is —15°C and the wind speed is 30 km/h, the

apparent temperature decreases by about 0.15°C for every km/h that the wind speed increases.

(b) For a fixed wind speed v, the values of the wind-chill index W increase as temperature 7" increases (look at a column of

ow . .. . .
the table), so — is positive. For a fixed temperature 7, the values of W decrease (or remain constant) as v increases

oT

(look at a row of the table), so ow is negative (or perhaps 0).

v
(c) For fixed values of T, the function values f(T, v) appear to become constant (or nearly constant) as v increases, so the

corresponding rate of change is 0 or near 0 as v increases. This suggests that lim (OW/dv) = 0.

5. (a) If we start at (1, 2) and move in the positive z-direction, the graph of f increases. Thus f, (1, 2) is positive.

(b) If we start at (1,2) and move in the positive y-direction, the graph of f decreases. Thus f, (1, 2) is negative.

7. (@) fox = a% (fz), SO fza is the rate of change of f, in the x-direction. f, is negative at (—1,2) and if we move in the
positive z-direction, the surface becomes less steep. Thus the values of f, are increasing and f.. (—1, 2) is positive.

(b) fyy is the rate of change of f, in the y-direction. f, is negative at (—1, 2) and if we move in the positive y-direction, the

surface becomes steeper. Thus the values of f, are decreasing, and fy, (—1, 2) is negative.

9. First of all, if we start at the point (3, —3) and move in the positive y-direction, we see that both b and ¢ decrease, while a
increases. Both b and ¢ have a low point at about (3, —1.5), while a is 0 at this point. So a is definitely the graph of f,,, and
one of b and ¢ is the graph of f. To see which is which, we start at the point (—3, —1.5) and move in the positive z-direction.
b traces out a line with negative slope, while c traces out a parabola opening downward. This tells us that b is the x-derivative

of c. So c is the graph of f, b is the graph of f., and a is the graph of f,,.
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flz,y) =16 — 42> —y* = f.(x,y) = —8rand fy(z,y) = —2y = f.(1,2) = —8and f,(1,2) = —4. The graph
of £ is the paraboloid z = 16 — 42 — y? and the vertical plane y = 2 intersects it in the parabola z = 12 — 422, y = 2
(the curve C in the first figure). The slope of the tangent line z z

to this parabola at (1,2, 8) is f»(1,2) = —8. Similarly the

plane x = 1 intersects the paraboloid in the parabola

z =12 — y?, x = 1 (the curve Cs in the second figure) and

the slope of the tangent line at (1,2, 8) is f,(1,2) = —4. 2l
<
X

f@y) =2 +y*+2°y = fo=2z+2zy, f,=2y+2"

Note that the traces of f in planes parallel to the zz-plane are parabolas which open downward for y < —1 and upward for
y > —1, and the traces of f, in these planes are straight lines, which have negative slopes for y < —1 and positive slopes for
y > —1. The traces of f in planes parallel to the yz-plane are parabolas which always open upward, and the traces of f, in

these planes are straight lines with positive slopes.

flz,y)=9° =32y = fo(z,y) =0—3y= -3y, fy(z,y) =5y* — 3z

f(z,t)=etcosmz = fo(x,t)=e " (—sinmz)(r) = —me 'sinma, fi(z,t) =e '(—1)cosmz = —e ' cosmw
10 0z 9 o 02 9 9
z=2zx+3y)" = = 102z + 3y)” - 2 = 20(2z + 3y)°, e =10(2z + 3y)” - 3 = 30(2z + 3y)
_T—y _ Wty —(-y®) _ 2
_ Dty —(@-—y@d) 2
fu(@,y) = (z+y)? T (z+y)?
. ow ow . .
w=sina cosff = a—a—cosacosﬁ, %——sma sin 3
f(r,s) =rin(r* +s*) = f.(r,s)=r- _2r +In(r? +s%) 1= 2 +In(r? + s?)
) b 72 + 52 r2 + 52 '
fors) =1 o 0= 2

T2+82 T2+82
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du
ot

w/t —t. ew/t(_wt72) 4 ew/t 1= ew/t _ %ew/t _ ew/t (1 _ E), % _ tew/t . l _ ew/t

u =te
t ow t

=

f(xayvz) =Tz — 51‘2y32’4 = fm(x7y, Z) =z—= 1Ol‘y324> fy(xvya Z) = —151‘2y22’4, fz(xayvz) =T — 20‘772?/333

w=In(x+2y+32z) = G_w_; a_w—; a_w_;
- Y 0r x+2y+32" 0y ax+2y+32° 0z x+2y-+3z

u=xysin"'(yz) = % = ysin~*(yz) % =ay- . (2) +sin Y (yz) -z = L +xsin™ ! (yz2)
iz oy Y T i-ve |

ou

9 ay- 1 (y) = o

0z V1= (y2)? V1—y222

fa,y,2,t) = ay2’tan(yt) = fo(w,y,2,1) = yz* tan(yt),

fy(x,y, 2,t) = zy2® - sec (yt) - t + x2* tan(yt) = wyz>t sec®(yt) + x22 tan(yt),

fo(@,y, 2,t) = 2zyztan(yt), fi(z,y, z,t) = zyz® sec’(yt) - y = ay®2” sec’ (yt)

T
VT T

u= /23 +a}+ - +x2. Foreachi=1,...,n,u; = %(m%+x§+--~+xi)_l/2(2xi):

f(ﬂﬁ,y)zln(gg+ $2+y2) N

1 1 x

w(T,y) = ——— 1+ 3> +°) "V (2)| = —0— [ 1 + — |,
falwy) = — x2+y2[ B +y?) (20 = — — —
s0 f=(3,4) = ! (1—|— 3 >:l(1+§):l_

U3V & VEREEY A

B Yy W z+y+2)—y@d) T+ z
f(x,y,z)—$+y+z = Ju(@y,2) = (z+y+2?  (z+y+2)?*
2 -1 1

s0 fy(2,1,-1) = ot CA

BECES RGNy

f@y) =2y’ -2’y =

fz (z,y) _ hhi% f(x+h,y}sz(x7y) — IILILHO (‘I+h‘)y2 _ (‘T+];’L)3y7 (‘Ty2 7x3y)

2 g 2 g2
~ lim h(y* — 3z“y — 3zyh — yh*)
h—0 h

= }lbir%(yQ — 32%y — 3zyh — yh®) = y* — 32%y

o fEy+h) = fly) . zly+h)?—2Py+h) () —2%y) . h(2zy+axh —2®)
fu (2,y) = Jimy h =i h = Jim, h

= }llin%)(2xy +xh —2%) =22y — 23

0 0 0z 0z
2,2, .2 2, .2 2y _ _ .
+y*+ 27 =3zyz = ax(x +y°+2%) ax(3xyz) = 2x+0+2zam 3y(xax+z 1) &
0z 0z 0z 0z 3yz—2x
S Ty o 3yz — 2z < (2z — 3xy) B 3yz — 2z, so 9~ 22— 3zy

Jd , 4 9 9 0 0z 0z 0z 0z
< -9 2y +2: 22 = . 2: L 30y L — 3409
9y (x* +y° +2%) By Bzyz) = 0+4+2y+ Zay 3z yay-i-z & Z(’?y 3y a9y 3rz -2y &

0z 0z 3xz—2y
2 — 2 3ar— 2y, 50 2L = X2 Y
(2z — 3zy) ay 3xz — 2y, so 9y~ 22 3wy
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47. x — z = arctan(yz) = %(m—z):%(amtan(yz)) = 1—%:@-@;% &
2.2 2.2
T G 9z L g (yrltyaNoz 0 l4yz
14 y222 ox 1+ y222 ox or 14y +y222
0 0 0z 1 0z
L r— =2 e SR (Pt 1
By T —z) By (arctan(yz)) = 0 9y~ 15 (92 (y 8y+z ) &
2 2
o vy 4% o __ = _(ytlityzN\Oz 02z
14 y222 14 y222 dy 14 y222 14 y222 dy dy 14y +y222?
_ 0z _ 4 %7 ’
8 @:=f@) o) = F=r@ T =g

0= f(@+y). Letu=zty Then 02 = LI _ B () _ oy = iz gy

Oz _ W 0u _ 4 (1) priuy = f'(a +).

Oy dudy du

51. f(z,y) = 2°y° + 22"y = fo(w,y) = 32°y° +82%y, fy(x,y) = 5a°y* + 22", Then foo(2,y) = 62y° + 2427y,

Juy (2, y) = 1522y* + 823, fuu(x,y) = 152%y* + 82°, and f,, (z,y) = 20x>y>.

U v
53 w =V + 02 = wy, = (402 71/2-2u:—,wv =1(?+0v*)" Y2 .20 = ———— Then
2( ) /7,“2_'_,02 2( ) \/m
LB —w @ ) 00 PR - NEER -
e ( /u2—|—v2)2 o u? + v? - (u2 + v2)3/2 - (u? +v2)3/2°
uv U

Waw = u (=3) (u® +02) 7% (20) = — v (=1) (@ +0%) " (2u) = —

NOE _,_,Uz)s/z’w”“ (u® + v2)3/2°

1. /u2+1)27v~%(u2+v2)_1/2(21}) /—u2+v2—v2/ /u2+112 _ u2+v2—v2 u2

Wyv = =

(\/mf w2 + 02 T (W2 + 02)3/2 = (W2 +v2)3/2
55. z = arctan Ty =
1—zy
- 1 WA —zy) —(@+y)(=y) _ 1+y° N 1442
g (2 )2 (1 —ay)? A—ay)? + (@ +y)2  1+a2+y2+a2p?
l—zy
. 1+y° 1
S A+a?)(1 4y 1ta?
L 1 (M)A —zy) —(z+y)(—=z) _ 1+2° _ 1+2° 1
Lo () (= IR R e R D [ R e
—y
2z 2y

Then 2y, = —(1 + m2)72 2w = ay =0, 2yz =0, zyy = —(1 ‘1’92)72 2y = -

T+’ I+

57. u = zsin(x + 2y) = 1w, =z -cos(z + 2y)(1) + sin(x + 2y) - 1 = z cos(x + 2y) + sin(z + 2y),
Ugy = x(—sin(x + 2y)(2)) + cos(z + 2y)(2) = 2cos(z + 2y) — 2z sin(x + 2y),
uy = zcos (x + 2y) (2) = 2z cos(z + 2y),
Uys = 22 - (—sin(z + 2y)(1)) + cos (x + 2y) - 2 = 2 cos(x + 2y) — 2z sin(x + 2y). Thus Uuzy = Uya.
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1 1 T

_ _ 2 2\1/2 1 2 2 _ _
u=In\/z%+y?=In(z*+9°)"? = 3In(z® +°) = uz—§x2+y2-2x—x2+y2,

_ 2xy 1 1 Y

o 2 2\—2 ey _ -+ . _ _ 9

oy = (D)@ 4 07)H2) =~ anduy = G2y =

_ 2xy
Uyx = y(—l)(:n2 + y2) 2(21’) = —m. Thus Ugy = Uyx.

flz,y) = 3zy* + 2%y = fo =3y* +32%9°%, fux = 629>, frey = 122y and

fy= 122y° + 22°y, Jyy = 36zy® + 22°, Jyyy = T22y.

f(z,y,2) =cos(dx + 3y + 22) =

fo = —sin(4x + 3y + 22)(4) = —4sin(4x + 3y + 22), foy = —4cos(dx + 3y + 22)(3) = —12cos(4z + 3y + 2z),
fayz = —12(—sin(4x + 3y + 22))(2) = 24sin(4z + 3y + 2z) and

fy = —sin(4x + 3y + 22)(3) = —3sin(4x + 3y + 22),

fy= = —3cos(4x + 3y + 22)(2) = —6cos(4x + 3y + 22), fy-» = —6(—sin(4x + 3y + 22))(2) = 12sin(4z + 3y + 2z).

ou

u=e"sinfh = 0= e cosf +sinf - e (r) = €™ (cos @ + rsinf),

82“‘ 70 (1 s 70 70 (: .
00 = € (sind) 4 (cosO + rsinf)e™ (0) = € (sinf + 6 cosf 4 rfsinb),

,

83” r60 . . . r60 r60 . :

5200 — ¢ (0sin®) + (sinf + @ cos + rOsin ) - e™ (0) = Oe"™ (2sin + 0 cos O + rf sin ).

.

x 1 ow ., Q*w —2 —2
Ow 4 ow
= (-2 22)7%(2) =4(y+22) = ——— and — =z(-1 22)72(1) = — 22)72
5iapgs = (D27 @) =4+ 29 = s and G = a(-1)(y +22)7 (1) = —a(y +29)
0w , 0w
= — 2 - y, ——/— = 0

Oz Oy (v +22) ox? dy

By Definition 4, f,(3,2) = }llin% FB+h 2}1 = f3:2) which we can approximate by considering h = 0.5 and h = —0.5:
£(3.5,2) — £(3,2)  224-175 £(255,2) — £(3,2) 102-175 .
(3,2) ~ = =938, f2(3,2) = = =14.6. A
f=(3,2) 05 0F 9.8, f2(3,2) Y- 05 6. Averaging
these values, we estimate f5(3,2) to be approximately 12.2. Similarly, f,(3,2.2) = }llin%] fB+h 2'2}1 —f(3,22) which
. S .5,2.2) — 2.2 26.1 — 15.
we can approximate by considering h = 0.5 and h = —0.5: f;(3,2.2) = 1(3.5, 2) 5 1(3,22) = 6 05 59 =204,
f2(3,2.2) = 125, 2'2)0_5f(3’ 22) _ 93 _0155'9 = 13.2. Averaging these values, we have f.(3,2.2) ~ 16.8.
To estimate [z, (3, 2), we first need an estimate for f,(3,1.8):
.5,1.8) — 1. 20.0 —18.1 2.5,1.8) — 1. 12,5 - 18.1

o3 18) ~ LB ZTGB18) 00181 _ 540 35 [251 JG L 125181 _ ),

0.5 0.5 —0.5 —-0.5

Averaging these values, we get f(3,1.8) = 7.5. Now fuy(z,y) = g [fe(x,y)] and fz(x,y) is itself a function of two
Y
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variables, so Definition 4 says that f,(z,y) = % [fe(z,y)] = }llir% Jo(z,y + hiz = fol@,y) =
i J2(3,24h) — f2(3,2)
feu(3,2) = Jimy h :
We can estimate this value using our previous work with h = 0.2 and h = —0.2:
f=(3,2.2) — f2(3,2) 16.8—12.2 f=(3,1.8) — f=(3,2) 7.5-—122

- 2) ~ = =23, f2y(3,2) = = = 23.5.
Jou(3,2) 0.2 0.2 3 Jry(3,2) —0.2 —0.2 35
Averaging these values, we estimate f,(3,2) to be approximately 23.25.
w=e"Ftginkr = uy = ket coska, ups = —k2e~ %t sin kx, and uy = —a?k2e~ " t sin k.

Thus 0 uzs = us.

1
U= e = up = (—3) @+ +27) 7P (20) = —2(a® +y7 4+ 2°) 7 and

/x2+y2 +22

Upy = _($2 +y2 +z2)—3/2 —CE’(—%)(%‘Q +y2 +Z2)_5/2(2$) _

22 — g2 — 22

(332 +y2 + Z2)5/2'

2 9222 — g2 42

(1'2 + y2 + Z2)5/2'

2% — 2% — 2
(22 + y2 + 22)5/2

By symmetry, uy, = and u,. =

22—y — 22422 —a? — 22 422 g P

=0.
(x2+y2+22)5/2

Thus uzz + Uyy + Uz =

Letv =2+ at, w=2x —at. Thenwu; = 3[f(v)8-|t- 9(w)] _ dj;(;}) % dil(q:u) 88—1:; =af'(v) — ag’(w) and

! _ !/
Upt = Olaf (v)at ag'(w)] _ alaf” (v) + ag” (w)] = a®[f" (v) + g" (w)]. Similarly, by using the Chain Rule we have

Uy = f'(v) + ¢ (w) and uze = £ (v) + ¢’ (w). Thus uer = a*Uzs.

. . 0z e’ 0z e 0z 0z e’ e e’ +eY
— €T Y A -~ _
z=1In(e® +eY) = 95— v fov and 3y

— 80 — + — = = =
er + e¥ or Oy ez—l—ey—i_ei—i—ey er + ey

& (e +eY)—eP(e”) et Pz 0—e¥(e") _ ety and
Ox? (er + ev)? (er+ev)2’ Ox0y  (er +ev)2  (e® +ev)2’
2 Y[, T Y\ _ LY (LY z+y
0z (" te¥)—el(e’) e Thus
Oy? (er + ev)? (e* + ev)?
0’z 0%z 9%z \° erty erty ety \? (e tv)? (e tv)?
0r2 dy? <8x 8y) T (et +ev)? (er +ev)? (_ (e + ey)2> T (et ev)t  (e* +ev)t
. . . . dpP P . . . .
If we fix K = Ko, P(L, Ko) is a function of a single variable L, and gL @ isa separable differential equation. Then

% = a% = /% = /a % = In|P|=aln|L|+ C (Ko), where C(Ko) can depend on Ko. Then
|P| = eI+ C(Ko) ‘and since P > 0 and L > 0, we have P = 2 LeC(K0) = oC(K0)oIn LY — ¢ (K )L™ where
Cl(Ko) = GC(KO).

By the Chain Rule, taking the partial derivative of both sides with respect to R; gives

OR™ OR _ 0[(1/R)+(1/Re) + (1/Rs)] 2 OR OR _R?
OR OR: OR: OR: OR:  R¥

= —R;?. Thus
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. By Exercise 82, PV =mRT = P =

Since T' = ﬂ, we have T’
mR

oK _
" om

, OK

e oe T
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K
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mTRT,sog—ITD - m7R.A1so,PV=mRT N v:mTIfTandg_‘T/ :mTF'
opov._ PV mR mk_ o
T T  mR V P 7
0K O*K
= m. Thus I 9z = %UQm: K.

Selzy) =z +4y = fay(z,y) =4and fy(z,y) =3z —y = fya(x,y) = 3. Since f, and f,. are continuous

everywhere but f,(x,y) # fyz(z,y), Clairaut’s Theorem implies that such a function f(x,y) does not exist.

. By the geometry of partial derivatives, the slope of the tangent line is f5(1,2). By implicit differentiation of

4a® + 2y + 2% = 16, we get 8x + 22 (92/0x) =0 = 0z/0x = —4x/z,s0 when z = 1 and z = 2 we have

0z /0x = —2. So the slope is f»(1,2) = —2. Thus the tangent line is given by z — 2 = —2(z — 1), y = 2. Taking the

parameter to be £ = x — 1, we can write parametric equations for this line: x = 14+¢, y =2, 2 =2 — 2t.

. By Clairaut’s Theorem, foyy = (foy), = (fya), = fyay =

. Let g(z) = f(2,0) = x(2?)3/2e" =  |z| . But we are using the point (1,0), so near (1,0), g(z) = 2~ 2. Then

g'(x) = =223 and ¢'(1) = —2, so using (1) we have f,(1,0) = ¢'(1) = —2.

@

\
N
\\\\\\ e %Y

N

\\\\\"{’/;/,,
\E4

(b) For (z,y) # (0,0),
_ (B2y —®) (@ + %) — (2Py — 2y®)(22)
- (z2 +y2)2
oy + dx?y® — o
(1-2 +y2)2

fo(2,y)

x® — 4a3y? — xyt

and by symmetry fy(z,y) =

(22 + 32)2
(©) f=(0,0) = ;ILIL% = }ILIL% = 0 and f,(0,0) = ;llli% = 0.
_ % T fx(ovh)_fx(ovo) 1 (—hs—O)/h4 _ :
(@ By (3). f2y(0,0) = % = Jim . = Jim S — 1 while by ()
_Ofy _ v fy(R0) = £,(0,0) _ . hY/RT
Fe00) =g =M™ S =t
(e) For (z,y) # (0,0), we use a CAS to compute
z® + 9zty? — 9x2y* — ¢F ””” “‘0“;’;‘%
Flo) = i
(e v) : i

Now as (z,y) — (0,0) along the z-axis, fzy(z,y) — 1 while as
(z,y) — (0,0) along the y-axis, foy(z,y) — —1. Thus fg, isn’t

continuous at (0, 0) and Clairaut’s Theorem doesn’t apply, so there is
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no contradiction. The graphs of f,, and f,, are identical except at the

origin, where we observe the discontinuity.
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15.4 Tangent Planes and Linear Approximations ET 144

1. 2= f(xay) = 4'172 - y2 +2y = fz(x7y) = 837’ fy(x,y) = _2y+25 SO fm(_172) = _8’ fy(_172) =—2.
By Equation 2, an equation of the tangent plane is z — 4 = f.(—1,2)[z — (—1)] + f,(-1,2)(y — 2) =

z—4=-8(x+1)—2(y—2)orz=—8x—2y.

3Zz=flay)=Vry = faolz,y)=509) 2y =3Vy/ fuley) = 5(ey) 7 a = 5/ fys0 f2(1,1) = 5
and fy(1,1) = 1. Thus an equation of the tangent plane is z — 1 = f(1,1)(z — 1) + f,(1,1)(y — 1) =

2_1:%(;c—l)—f—%(y—l)orgc—i—y—Zz:O.

5.2 = f(z,y) = yeos(z—y) = fo = y(—sin(z — y)(1)) = —ysin(z —y),
fy = y(—sin(z — y)(—1)) + cos(z — y) = ysin(x — y) + cos(z — y), so fz(2,2) = —2sin(0) = 0,

Jy(2,2) = 2sin(0) + cos(0) = 1 and an equation of the tangent plane is z — 2 = 0(z — 2) + 1(y — 2) or z = y.

6. z = f(z,y) = R AN fo(z,y) = 2ze® V", fy(z,y) = —2yem2_y2, so fz(1,—1) =2, f,(1,—-1)=2.
By Equation 2, an equation of the tangent plane is z — 1 = f5(1, —=1)(z — 1) + fy(1,-1)[y — (-1)] =

z—1=2(x—1)+2(y+1)orz=2x+2y+ 1

1.z = f(r,y) = 2" +ay +3y°,50 fu(z,y) =20 +y = fo(1,1) =3, fy(z,y) =2 +6y = fy(1,1)="Tandan
equation of the tangent plane is z — 5 = 3(x — 1) + 7(y — 1) or z = 3z + Ty — 5. After zooming in, the surface and the
tangent plane become almost indistinguishable. (Here, the tangent plane is below the surface.) If we zoom in farther, the

surface and the tangent plane will appear to coincide.

Ny
RN —
ATy
R R R R =
e T R
AR
R S
S

_aysin(z —y) . _ysin(z—y)+aycos(z—y) 22°ysin(z —y)
9. f(l',y) = m A CAS gives f_L (x,y) = 1+x2+y2 — (1+x2 +y2)2 and

rsin(z —y) —aycos(zr —y) 227° sin (z — y)
1+22+y2 (1422 +y2)°

Jy (z,y) = . We use the CAS to evaluate these at (1, 1), and then

1

substitute the results into Equation 2 to compute an equation of the tangent plane: z = sz — %y. The surface and tangent

plane are shown in the first graph below. After zooming in, the surface and the tangent plane become almost indistinguishable,
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as shown in the second graph. (Here, the tangent plane is shown with fewer traces than the surface.) If we zoom in farther, the

surface and the tangent plane will appear to coincide.

AN ANRNE
s
RS NSNNE

" f(z,y) == \/5 The partial derivatives are f(z,y) = \/gand fy(zyy) = L, so fz(1,4) =2and f,(1,4) = i. Both

2y

f« and f, are continuous functions for y > 0, so by Theorem 8, f is differentiable at (1,4). By Equation 3, the linearization of
fat(1,4)is givenby L(z,y) = f(1,4) + fo(1,4)(z — 1) + fu(1,4)(y —4) =2+ 2(x — 1) + i(y —4) =2z + iy — 1.

1(x+y) —x(1)

g W@ty amd

13. f(z,y) = xL—ky The partial derivatives are f5(z,y) =

fo(@,y) =a(-1)(z+y) > - 1=—z/(z+y)> s0 f(2,1) = % and f,(2,1) = —2. Both f, and f, are continuous
functions for y # —x, so f is differentiable at (2, 1) by Theorem 8. The linearization of f at (2, 1) is given by

L(z,y) =f2,1)+ 22, D)@ -2)+ fu(2 D)y -1)=F+5@@-2)-Fy—1)=50-Fy+3.

15. f(x,y) = e"“Ycosy. The partial derivatives are f,(z,y) = e “Y(—y)cosy = —ye ¥ cosy and
fy(z,y) = e *¥(—siny) + (cosy)e Y (—xz) = —e Y (siny + x cos y), s0 fz(m,0) = 0 and f, (7, 0) = —.
Both f, and f, are continuous functions, so f is differentiable at (7, 0), and the linearization of f at (7, 0) is
L(z,y) = f(m,0) + fu(m,0)(x = 7) + fy(7,0)(y = 0) =1+ 0(z — 7) —7(y —0) = 1 — 7y.

—8xr — 12
(4y +1)?

17. Let f(z,y) = izif Then f,(z,y) = @% and fy(z,y) = (22 +3)(=1)(dy +1)"2(4) =

. Both f; and f

are continuous functions for y # —1, so by Theorem 8, f is differentiable at (0, 0). We have f,(0,0) = 2, f,(0,0) = —12
and the linear approximation of f at (0,0) is f(z,y) = f(0,0) + f2(0,0)(z — 0) 4+ f,(0,0)(y — 0) = 3 + 2z — 12y.
0. f(r,0) = VO TP > fulr,y) = e and fy () = —— e,
V20 — 22 — Ty? V20 — 22 — Ty?
s0 f2(2,1) = —2 and f,(2,1) = —%. Then the linear approximation of f at (2, 1) is given by
flay) = fQD)+ L210)E@-2)+ 21y -1)=3-3@-2)-f@y-1)=-3z-fy+ %
Thus f(1.95,1.08) ~ —2(1.95) — 2(1.08) + 2 = 2.846.
2. f(z,y,2) =22+ 92+ 22 = folz,y,2) = ;, fy(z,y,2) = 4, and
/$2+y2_’_z2 /33'2 +y2+z2

z 3,2,6) = 2, 3,2,6) = 2, f.(3,2,6) = &. Then the linear approximation of f at
7> Jy 7 7

2\T,Y,2) = —F/————=, S0 J
L iy R
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23.

25.

27.

29.

31.

33.

35.
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(3,2,6) is given by

f(@,y,2) = [(3,2,6) + f2(3,2,6)(z — 3) + [,(3,2,6)(y — 2) + f=(3,2,6)(2 — 6)

=7+3(@x-3)+23(y—2)+5(z—6) =22+ 2y+ Sz

Thus /(3.02)2 + (1.97)% + (5.99)% = £(3.02,1.97,5.99) ~ £(3.02) + 2(1.97) + £(5.99) ~ 6.9914.

From the table, f(94,80) = 127. To estimate f(94,80) and fr (94, 80) we follow the procedure used in Section 15.3

[ET 14.3]. Since f(94, 80) = lim 1947 ":80) = f(94,80)

lim h , we approximate this quantity with h = 42 and use the

values given in the table:

Fr(94.80) ~ f(96,80) — £(94,80) _ 135127 £r(94,80) ~ f(92,80)_—2f(94,80) _ 119_—2127 _

4
2 2

£(94,80 + h) — £(94, 80)
h

Averaging these values gives f7(94, 80) ~ 4. Similarly, fz (94, 80) = }llil'% ,s0 we use h = +£5:

£(94,85) — f(94,80) _ 132127 f(94,75) — f(94,80) _ 122127 _

- —— =1 fu(94,80) ~ — — 1

Fr(94,80) ~

Averaging these values gives (94, 80) & 1. The linear approximation, then, is
f(T H) ~ f(94,80) + fr(94,80)(T — 94) + fu(94,80)(H — 80)
/2 127+ 4(T — 94) + 1(H — 80) [or 4T + H — 329]
Thus when 7" = 95 and H = 78, f(95,78) ~ 127 + 4(95 — 94) 4 1(78 — 80) = 129, so we estimate the heat index to be

approximately 129°F.

0z 0z 1 213
_ .3 2 _ 9.2 2 3 a2 2
z=z"In(y*) = dZ—%d:r—f—a—ydy—?»x In(y*)dz + = -y—2(2y)dy—3x In(y )dﬂc+7dy
m=p'¢ = dm=2"dp+ P dq=5pie® dp+ 3P’ dg
dp Jq
R=aB’cosy = dR= a—Rda+ a—RdBJr @d’y = % cosyda + 203 cosydB — aff? siny dy

O ap oy
dr = Ax = 0.05,dy = Ay = 0.1, z = 52° + y*, 2, = 10z, 2z, = 2y. Thus whenz = 1 and y = 2,
dz = z5(1,2) dz + z4(1,2) dy = (10)(0.05) + (4)(0.1) = 0.9 while

Az = £(1.05,2.1) — f(1,2) = 5(1.05)% + (2.1)* — 5 — 4 = 0.9225.

dA = (;_A dz + g_A dy = ydx + xdy and |Az| < 0.1, |Ay| < 0.1. We use dz = 0.1, dy = 0.1 with z = 30, y = 24;
€T Y

then the maximum error in the area is about dA = 24(0.1) + 30(0.1) = 5.4 cm?.

The volume of a can is V' = wr?h and AV ~ dV is an estimate of the amount of tin. Here dV = 2nrh dr + 7r? dh, so put
dr = 0.04, dh = 0.08 (0.04 on top, 0.04 on bottom) and then AV ~ dV = 27 (48)(0.04) + 7(16)(0.08) ~ 16.08 cm®.

Thus the amount of tin is about 16 cm®.
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37. The area of the rectangle is A = xy, and AA ~ dA is an estimate of the area of paint in the stripe. Here dA = y dzx + x dy,
sowith dz = dy = 353 = 2, AA ~ dA = (100)(3) + (200)(3) = 150 ft*. Thus there are approximately 150 ft* of paint
in the stripe.

. OR . ... . . o . .

39. First we find ETTh implicitly by taking partial derivatives of both sides with respect to R :
1

a (1 d[(1/R1) + (1/Rz2) + (1/R3)] _, OR 5 OR R?
— =)= — — = —— = —. Thenb t
OR, <R> oR, > RUgg = BR,  RZ o |onPysymmetry,

OR R* OR R’ 117
— = =, =—— = —5. When R; =25, R, =40 and R3 =50, = = — R=20q.
OR, Rl 0R, Rz i fn=alandin =0l p = on < 7
Since the possible error for each R; is 0.5%, the maximum error of R is attained by setting AR; = 0.005R;. So
OR OR OR 1 1 1
AR~ dR = — ARy + — AR + — AR3 = (0.005)R*( — + — + — | = (0.005)R = & ~ 0.059 Q2.
R, “h T gR, At T g, At = (0005) <R1+R2+R3) (0:005) = w7
. Aw Ah . .

41. The errors in measurement are at most 2%, so v < 0.02 and 7 < 0.02. The relative error in the calculated surface

area is

AS dS  0.1091(0.425w® 42~ 1)h0- 725 day + 0.1091w 425 (0.725h°- 7257 1) dh, dw dh

IR 0.1091w0-4250.725 = 04257 +0.7255
To estimate the maximum relative error, we use d_w = & = 0.02 and @ = M =0.02 =

w w h h
ds . . .
< = 0.425 (0.02) 4 0.725 (0.02) = 0.023. Thus the maximum percentage error is approximately 2.3%.
43. Az = f(a+ Az,b+ Ay) — f(a,b) = (a + Ax)* + (b+ Ay)? — (a® +b?)
=a?+2a Az + (Ax)? + 0% + 20 Ay + (Ay)? — a® — b* = 2a Az + (Az)? + 20 Ay + (Ay)?

But fz(a,b) = 2a and fy(a,b) = 2band so Az = fy(a,b) Az + f,(a,b) Ay + Az Az + Ay Ay, which is Definition 7
with e;1 = Az and e; = Ay. Hence f is differentiable.

45. To show that f is continuous at (a, b) we need to show that ( %nn( N f(z,y) = f(a,b) or

x,y)—(a,
equivalently lim fla+ Az,b+ Ay) = f(a,b). Since f is differentiable at (a,b),
(Az,Ay)—(0,0)
fla+ Az, b+ Ay) — f(a,b) = Az = fu(a,b) Az + fy(a,b) Ay + €1 Ax + €2 Ay, where €1 and e2 — 0 as
(Az, Ay) — (0,0). Thus f(a+ Az, b+ Ay) = f(a,b) + fz(a,b) Az + fy(a,b) Ay + e1 Az + 2 Ay. Taking the limit of
both sides as (Az, Ay) — (0,0) gives N Alir)n 0.0 fla+ Az, b+ Ay) = f(a,b). Thus f is continuous at (a, b).
z,AYy)—U,
15.5 The Chain Rule ET 14.5
. dz Ozdx  Ozdy
_ .2 2 _ _ ot ¢z _ Ozdx  Ozay _ ¢
1L z=z*4y  +ay, z=sint, y=e€" = 7 8xdt+8ydt (2z +y) cost + (2y + x)e
.z=/14+224+y% xz=Int, y=-cost =

dz  Ozdx  Ozdy 2, ay—1/2 1 2, 2\—1/2 . _ 1 z ;
= a—ya_§(1+x +y7) T (2e) 5+ (1 +y7) (2y)(—smt)—\/TTy2(;*ysmt)



