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15.1 Functions of Several Variables ET 141

1. (a) From Table 1, f(—15,40) = —27, which means that if the temperature is —15°C and the wind speed is 40 km/h, then the
air would feel equivalent to approximately —27°C without wind.

(b) The question is asking: when the temperature is —20° C, what wind speed gives a wind-chill index of —30°C? From
Table 1, the speed is 20 km/h.

(c) The question is asking: when the wind speed is 20 km/h, what temperature gives a wind-chill index of —49°C? From
Table 1, the temperature is —35°C.

(d) The function W = f(—5, v) means that we fix 7" at —5 and allow v to vary, resulting in a function of one variable. In
other words, the function gives wind-chill index values for different wind speeds when the temperature is —5°C. From
Table 1 (look at the row corresponding to 7" = —5), the function decreases and appears to approach a constant value as v
increases.

(e) The function W = f (T, 50) means that we fix v at 50 and allow 7 to vary, again giving a function of one variable. In
other words, the function gives wind-chill index values for different temperatures when the wind speed is 50 km/h . From

Table 1 (look at the column corresponding to v = 50), the function increases almost linearly as 7" increases.

3. If the amounts of labor and capital are both doubled, we replace L, K in the function with 2L, 2K, giving
P(2L,2K) = 1.01(2L)° ™ (2K)%?° = 1.01(2°7%)(2%2°) LO T K%2° = (21)1.01L° " K% = 2P(L, K)

Thus, the production is doubled. It is also true for the general case P(L, K) = bL*K* ~“:
P(2L,2K) = b(2L)*(2K)' ™ = b(2*)(2'"*)L* K'~* = (2°T'=*)bL*K'~* = 2P(L, K).

5. (a) According to Table 4, f(40, 15) = 25, which means that if a 40-knot wind has been blowing in the open sea for 15 hours,
it will create waves with estimated heights of 25 feet.
(b) h = f(30,t) means we fix v at 30 and allow ¢ to vary, resulting in a function of one variable. Thus here, h = f(30, ¢)
gives the wave heights produced by 30-knot winds blowing for ¢ hours. From the table (look at the row corresponding to
v = 30), the function increases but at a declining rate as ¢ increases. In fact, the function values appear to be approaching a
limiting value of approximately 19, which suggests that 30-knot winds cannot produce waves higher than about 19 feet.
(c) h = f(v,30) means we fix ¢ at 30, again giving a function of one variable. So, h = f (v, 30) gives the wave heights
produced by winds of speed v blowing for 30 hours. From the table (look at the column corresponding to ¢ = 30), the
function appears to increase at an increasing rate, with no apparent limiting value. This suggests that faster winds (lasting
30 hours) always create higher waves.
7. (a) f(2,0) =223 = 4(1) =4
(b) Since both z* and the exponential function are defined everywhere, 22e3*V is defined for all choices of values for  and .
Thus the domain of f is R?.
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(c) Because the range of g(z,y) = 3zy is R, and the range of ” is (0, c0), the range of e9(*¥) = ¢37¥ s (0, c0).

The range of 22 is [0, 00), so the range of the product z2e**¥ is [0, co).

9. (a) f(2,—1,6) = V02D — VT — ¢

(b) eV*=**~%% is defined when z — 22 — 4> > 0 = 2z > 2 + y°. Thus the domain of f is {(x,y, 2) | z> a2+ y2}.

(c) Since \/z — 22 — y2 > 0, we have eV*~**~¥* > 1. Thus the range of f is [1, 00).

11. /x + y is defined only when x +y > 0, ory > —x. So
the domain of f is {(z,vy) | y > —=x}.

y

y=-x

15. /1 — 22 is defined only when 1 — 22 >0,0r2? <1
& —1<z<1,and ﬂ is defined only when
1—9y*>0,0ry> <1 < —1<y <1 Thusthe

domainof fis {(z,y) | -1 <2 <1, —1<y<1}.

y

1

19. We need 1 — 22 —y2 — 22> OOI‘.’IJ2+y2+Z2 <1,
so D = {(z,y,2) | * + y* + 2% < 1} (the points inside

or on the sphere of radius 1, center the origin).

13. In(9 — 2% — 9y?) is defined only when

9 — 2% —9y® > 0, or 2° + y* < 1. So the domain of f

is {(z,y) | $2* + y* < 1}, the interior of an ellipse.

-

=~

~—_

-

17. \/y — 22 is defined only when y — 2% > 0, or y > z°.

In addition, f is not defined if 1 — 2> =0 =
x = =£1. Thus the domain of f is

{(z,y) |y >a®, & # 1}

y

21. z = 3, a horizontal plane through the point (0, 0, 3).
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23. z =10 — 4x — 5y or 4z + 5y + z = 10, a plane with 25. 2 = y? + 1, a parabolic cylinder

z

intercepts 2.5, 2, and 10.

z

=

29. z = /22 +y2sox? 4+ y? = 2% and z > 0, the top half

at (0,0,1). of a right circular cone.

z
0,0,1) i
~"
-

31. The point (—3, 3) lies between the level curves with z-values 50 and 60. Since the point is a little closer to the level curve with

27. z = 4z° + y? + 1, an elliptic paraboloid with vertex

-

z = 60, we estimate that f(—3, 3) &~ 56. The point (3, —2) appears to be just about halfway between the level curves with

z-values 30 and 40, so we estimate f (3, —2) ~ 35. The graph rises as we approach the origin, gradually from above, steeply

from below.
33. Near A, the level curves are very close together, indicating that the terrain is quite steep. At B, the level curves are much

farther apart, so we would expect the terrain to be much less steep than near A, perhaps almost flat.

35. : 37.
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39. The level curves are (y — 2x)° = kory = 2z + V/k, 41. The level curvesarey — Inx = kory = Inz + k.
k > 0, a family of pairs of parallel lines. y )
y 1
0
/ -1
0 - X

4321 0 1234

43. The level curves are ye* = k or y = ke™ *, a family of 45. The level curves are \/y2 — 22 = k or y* — 2° = k2,
exponential curves. k > 0. When k = 0 the level curve is the pair of lines

y = Fx. For k > 0, the level curves are hyperbolas with

N\

axis the y-axis.

47. The contour map consists of the level curves k = x + 9y2, a family of

ellipses with major axis the z-axis. (Or, if k = 0, the origin.)

The graph of f (z,v) is the surface z = 2 + 932, an elliptic paraboloid.
y

//ﬁ%\‘\

(
§\\f

If we visualize lifting each ellipse & = = 4 932 of the contour map to the plane

z = k, we have horizontal traces that indicate the shape of the graph of f.

VKJ«((((((

49. The isothermals are given by k = 100/ (1 + 22 4 23°) or
2?4+ 2y* = (100 — k) /k [0 < k < 100], a family of ellipses.

A
v
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51 f(e,y) = e e .

/Q“\\
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83. f(z,y) = ay® — 2

Il 07177/
/4

-2 0 ) 0 -2

-2

The traces parallel to the yz-plane (such as the left-front trace in the graph above) are parabolas; those parallel to the xz-plane
(such as the right-front trace) are cubic curves. The surface is called a monkey saddle because a monkey sitting on the surface
near the origin has places for both legs and tail to rest.

55. (a) C (b)I1
Reasons: This function is periodic in both = and y, and the function is the same when « is interchanged with y, so its graph is
symmetric about the plane y = «x. In addition, the function is 0 along the z- and y-axes. These conditions are satisfied only by
Cand II.

57. () F (b) 1
Reasons: This function is periodic in both  and y but is constant along the lines y = = + k, a condition satisfied only by F and
L

59. (a) B (b) VI
Reasons: This function is 0 along the lines = 41 and y = £1. The only contour map in which this could occur is VI. Also
note that the trace in the zz-plane is the parabola z = 1 — 2 and the trace in the yz-plane is the parabola z = 1 — 2, so the
graph is B.

61. kK = = + 3y + 5z is a family of parallel planes with normal vector (1, 3, 5).

63. k = 2> — y? + 22 are the equations of the level surfaces. For k = 0, the surface is a right circular cone with vertex the origin
and axis the y-axis. For £ > 0, we have a family of hyperboloids of one sheet with axis the y-axis. For £ < 0, we have a

family of hyperboloids of two sheets with axis the y-axis.

65. (a) The graph of g is the graph of f shifted upward 2 units.
(b) The graph of g is the graph of f stretched vertically by a factor of 2.
(c) The graph of g is the graph of f reflected about the zy-plane.

(d) The graph of g(z,y) = —f(x,y) + 2 is the graph of f reflected about the zy-plane and then shifted upward 2 units.
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67. f(z,y) = 3z — z* — 4y* — 102y

20—
TN
\ \\\w.""" N
e

|
' A
i

i

il
il

5
Three-dimensional view Front view

It does appear that the function has a maximum value, at the higher of the two “hilltops.” From the front view graph, the

maximum value appears to be approximately 15. Both hilltops could be considered local maximum points, as the values of f

there are larger than at the neighboring points. There does not appear to be any local minimum point; although the valley shape

between the two peaks looks like a minimum of some kind, some neighboring points have lower function values.

69.

" f(zy) = eem First, if ¢ = 0, the graph is the cylindrical surface

e (whose level curves are parallel lines). When ¢ > 0, the vertical trace 4 \\‘\\\
above the y-axis remains fixed while the sides of the surface in the z-direction \\
“curl” upward, giving the graph a shape resembling an elliptic paraboloid. The 2

level curves of the surface are ellipses centered at the origin.

flzy) = ;26—132 As both z and y become large, the function values

appear to approach 0, regardless of which direction is considered. As
(x, y) approaches the origin, the graph exhibits asymptotic behavior.
From some directions, f(z,y) — oo, while in others f(x,y) — —oc.

(These are the vertical spikes visible in the graph.) If the graph is

examined carefully, however, one can see that f(x, y) approaches 0

along the line y = —x.

AN 7
1N /
z \\\&t&&i\\t&&&\\\\\i\\\ _ ;

N
N\
\\\\:\\

—1 0

—
/
”'//’/x “12 / 1.2
, N

¢ = 0.5 (level curves in increments of 1)
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For ¢ = 1 the level curves are circles centered at the origin.

[\S]

@)
U

|
—_
(S}

¢ = 1 (level curves in increments of 1)
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When ¢ > 1, the level curves are ellipses with major axis the y-axis, and the eccentricity increases as c increases.

[3%)

s

j@n

[\S]

¢ = 2 (level curves in increments of 4)

For values of ¢ < 0, the sides of the surface in the z-direction curl downward and approach the xy-plane (while the vertical

trace x = 0 remains fixed), giving a saddle-shaped appearance to the graph near the point (0, 0, 1). The level curves consist of

a family of hyperbolas. As ¢ decreases, the surface becomes flatter in the z-direction and the surface’s approach to the curve in

the trace x = 0 becomes steeper, as the graphs demonstrate.

@Z,

N
N

:

—1.2
1.2
Y /!
NS S S S N ]
I, L7 72711
S a
LA 1]
5
L AIE ) 0.
-1.2

¢ = —2 (level curves in increments of 0.25)
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73. z = 2° + y? + cxy. When ¢ < —2, the surface intersects the plane z = k # 0 in a hyperbola. (See graph below.) It intersects
the plane = = ¥ in the parabola z = (2 + ¢)2?, and the plane 2 = — in the parabola z = (2 — ¢)2®. These parabolas open in

opposite directions, so the surface is a hyperbolic paraboloid.

When ¢ = —2 the surface is z = 22 4+ y* — 2zy = (v — y)2. So the surface is constant along each line x — y = k. That
is, the surface is a cylinder with axis x — y = 0, 2 = 0. The shape of the cylinder is determined by its intersection with the

plane 2 + y = 0, where z = 422, and hence the cylinder is parabolic with minima of 0 on the line y = .

c=-52z=2
When —2 < ¢ <0, z > 0 for all z and y. If x and y have the same sign, then
2+ y? +exy > 2 +y? — 22y = (v — y)2 > 0. If they have opposite signs, then czy > 0. The intersection with the
surface and the plane z = k£ > 0 is an ellipse (see graph below). The intersection with the surface and the planes x = 0 and
y = 0 are parabolas z = 32 and z = =2 respectively, so the surface is an elliptic paraboloid.
When ¢ > 0 the graphs have the same shape, but are reflected in the plane = = 0, because

2% 4 y? + cxy = (—x)® + 4y + (—c)(—x)y. That s, the value of z is the same for ¢ at (x,y) as it is for —c at (—x, y).

2

-2

c=—-1,2=2
So the surface is an elliptic paraboloid for 0 < ¢ < 2, a parabolic cylinder for ¢ = 2, and a hyperbolic paraboloid for ¢ > 2.
75. (a) P =bL°K'™™ = % =bL*K™* = L. b(é) = ln£ = ln<b(£) ) =

K K K
ln% = lnb+aln<%>

(b) We list the values for In(L/K) and In(P/K) for the years 1899—1922. (Historically, these values were rounded to

2 decimal places.)
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53. % gx cos 9—1—2 sinf and g; :—%rsin@—kg—;rcosﬂ. Then
% = cosf <% cosf + 6?/25413 sin@) + sind (g Z §inf + 86282y cos@)
:COSQG%—FQCOSG sin9§%§y+sin29§iyz
and %:—rcosﬁ%—i—(—rsmé)) (222( rsm@)—l—%roosﬂ)

., 0z 0z 0z .
_rsmﬁa—y + rcosf (W rcosf + ——— 920y (—rsm@))

2 2

TCOSQ%TSiHQg—;+T‘QSiH29%2T2C080 sin@ax§y+r2005292—y§
Thus % %%—I—lg = (cos? 0 + sin? 9)—+(sm 6 + cos? Q)ZL
1 059%—% 9%+1<c039%+s 93—5)
= % +giy§ as desired.

55. (a) Since f is a polynomial, it has continuous second-order partial derivatives, and

f(tz, ty) = (tz)?(ty) + 2(tz)(ty)* + 5(ty)® = P2’y + 26%xy” + 5t°y® = 3 (2y + 22> + 5y°) = ¢* f (z,y).

Thus, f is homogeneous of degree 3.

(b) Differentiating both sides of f(tx,ty) = t" f(x, y) with respect to ¢ using the Chain Rule, we get
0 0 n
&f(txaty) - E[t f(fl?,y)} <

5y ftot) - 2+ a(t)f(t 0 B o s St t) v s Fta ) = e f o),

Settingtzl:x(,%f(:c y)+y f(fE y) =nf(z,y).

57. Differentiating both sides of f(tx, ty) = t" f(x, y) with respect to z using the Chain Rule, we get

2 fltwty) = 5o " flwy)]

5 e tn) - H b s faot) - Z 0 ) o t(tt) = O feln)

Thus f. (tx, ty) = t" " fo(2,9).

15.6 Directional Derivatives and the Gradient Vector ET 14.6

1. We can approximate the directional derivative of the pressure function at K in the direction of S by the average rate of change
of pressure between the points where the red line intersects the contour lines closest to K (extend the red line slightly at the
left). In the direction of S, the pressure changes from 1000 millibars to 996 millibars and we estimate the distance between
these two points to be approximately 50 km (using the fact that the distance from K to S is 300 km). Then the rate of change of

pressure in the direction given is approximately 2262900 — —0.08 millibar/km.
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3. Du f(—20,30) = Vf (20,30 - u = fr(—20, 30)( ) + fo(—20, 30)( )

f(=20 + h,30) — f(—20,30)
h

fr(—20,30) = }lLin}) , S0 we can approximate f7(—20, 30) by considering h = +5 and

f(—=15,30) — f(—20,30)  —26 — (—33)
5 n 5

using the values given in the table: fr(—20,30) ~ =14,

£(—25,30) — £(—20,30)  —39 — (—33)

fr(—20,30) ~ = 1.2. Averaging these values gives f7(—20,30) ~ 1.3.

-5 B -5
Similarly, f,(—20,30) = 1 (220,30 + h}z — f(=20,30) , S0 we can approximate f,(—20,30) with h = +10:
£(—20,40) — f(—20,30)  —34 — (—33)
A y ~ = = - '1a
£0(—20, 30) m - 0
Jfv(—20,30) =~ f(_20’20)__10f(_20’30) _ =30 :1(0_33) = —0.3. Averaging these values gives f,(—20,30) ~ —0.2.

Then Dy f(—20, 30)~13( )+( 02)( )%0.778.

x

5 f(z,y) =ye™® = fo(z,y) = —ye “and fy(z,y) = e . If uis a unit vector in the direction of ¢ = 27/3, then

from Equation 6, Dy f(0,4) = f4(0,4) cos(2) + f,(0,4)sin(&) = —4- (=3) +1- L =24 &2,

7. f(z,y) = sin(2z + 3y)

(@) Vf(z,y) = gf + ﬁ_} = [cos(2z 4 3y) - 2] i+ [cos(2z + 3y) - 3] j = 2cos (2z + 3y) i+ 3cos (2z + 3y) j

(b) Vf(—6,4) = (2cos0)i+ (3cos0)j =2i+ 3]
(c) By Equation 9, Dy, f(—6,4) = Vf(—6,4) -u= (2i+3j) - 1(v3i—j)=1(2v3-3)=v3-2.

9. f(z,y,2) = ze®
(a) Vf(d?,y,Z) = <f®(x?y7z):fy(x?y7z):fz(x:yaz)> = <62y232x262y2:2my62yz>
(b) V£(3,0,2) = (1,12,0)

(c) By Equation 14, Dy f(3,0,2) = Vf(3,0,2) - u = (1,12,0) - (3, -2 1) = +0=-22

3

win

wl

193

" f(z,y)=1+22y = Vf(a:,y):<2\/§,2x-%y_l/2> <2\/_ a:/\/_> Vf(3,4) = (4, 2), and a unit vector in

1 4 -2) 50 Du f(3,4) = Vf(3,4) -u=(4,2)- (4 -2) =

e A

13. g(p,q) =p* —p°¢® = Vglp,q) = (4p° — 2p¢®) i+ (—3p°¢®) j, Vg(2,1) = 28i — 12], and a unit

the direction of v is u =

vector in the direction of vis u =

m( i+3j) = \/ll_o(i—l—?,j), S0

Dug(2,1) = Vg(2,1) - u=(28i - 12j) - (i +3]) = = (28— 36) = ——E or 240,

15. f(x,y,2) = xe” +ye® + ze* = Vf(x,y,z) = (e + ze*, xe¥ + e*,ye* + %), Vf(0,0,0) = (1,1, 1), and a unit

vector in the direction of v is u = W (5,1,-2) = —=—= (5, 1,-2), s
Dy £(0,0,0) = V£(0,0,0) -u=(1,1,1) - ﬁ (5,1, —2) = J%
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17.

19.

21,

23.

25.

27.

29

g(z,y,2) = (z+ 2y + 32)3/2 =

Vy(z,y,z) = <%(aj + 2y + 32)12(1), S(z+2y+ 32)1/2(2), S(x+2y+ 32)1/2(3)>

=(3Vz+2y+32,3Vx + 2y + 32, 5Vx + 2y + 32 ), Vg(1,1,2) = (2,9, 3),

. . . . o s . _ 2 s 1
and a unit vector in the direction of v =2j — kisu = =i- = k, so

Dagl 12 = (30.5) (0.5 -%) = % - =15

fla,y) =y = Vf(x,y)=< (zy) (), %(wy)_l/2(w)>=< >,80Vf(278)=<1=i

Y x
2V/xy 2v/xy
' i irecti PQ i 3 _4
The unit vector in the direction of PQ = (5 — 2,4 —8) = (3, —4) isu = <37 75>’ o

fla,y) =v/r=y’a" = Vf(y) = (—y’z7>2ya" ") = (—y%/a*, 2y/x).

Vf(2,4) = (—4,4), or equivalently (—1, 1), is the direction of maximum rate of change, and the maximum rate
is [Vf(2,4)] = V16 + 16 = 4/2.

f(z,y) =sin(zy) = Vf(z,y) = (ycos(zy),xcos(zy)), Vf(1,0) = (0, 1). Thus the maximum rate of change is
|V f(1,0)| = 1 in the direction (0, 1).

flz,y,2) =22+ 92+ 22 =

Vi(z,y,z2) = <%x R 22220 La? 4?4 22) Y2 2y L(a? 4y 22) Y2 2z>

Yy z
< 242422 a2 22 2 2 +22>

Vf(3,6,-2) = (2, & —> = (2,8,—2). Thus the maximum rate of change is

IV£(3,6,-2)| = (%)2 +(9)*+(-2) = \/% — 1 in the direction (£, £, —2) or equivalently (3,6, —2).

(2) As in the proof of Theorem 15, Dy f = |V f| cos . Since the minimum value of cos 6 is —1 occurring when 6 = T, the
minimum value of Dy, f is — |V f| occurring when € = 7, that is when u is in the opposite direction of V f
(assuming V f # 0).

®) f(z,y) =2y —2*y® = Vf(z,y) = (42’y — 2zy®, " — 32°y?), so f decreases fastest at the point (2, —3) in the
direction —V f(2, —=3) = — (12, -92) = (—12,92).

The direction of fastest change is V f(z,y) = (2z — 2)i+ (2y — 4) j, so we need to find all points (z, y) where V f(x, y) is

paralleltoi+j < (2z—2)i+(2y—4)j=k(i+j) < k=2r—2andk=2y—4.Then2z —-2=2y—4 =

y = x + 1, so the direction of fastest change is i + j at all points on the line y = x + 1.
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31. T:AandmO: T(1,2,2) = Esol-c_360
/$2 +y2+22
<17_171>
ajju=———,
(a) 73
_ _ 2 2 2\ —3/2 _ 40 1 _ 40
D.T(1,2,2) = VT(1,2,2)-u= [—360@ + 1y +2%) (z,y, @le).u_ —5(1,2,2)- 25(1,-1,1) = -5

(b) From (a), VT = —360 (x2 + 1y +2%) —3/2 (z,y, z), and since (x, y, z) is the position vector of the point (x, y, z), the

vector — {(x, y, z), and thus VT, always points toward the origin.

3. VV(z,y,2) = (10x — 3y + yz,xz — 3z, zy), VV(3,4,5) = (38,6, 12)

(a) DuV(3,4,5) = (38,6,12) - = (1,1,-1) =

32
V3 V3
(b) VV(3,4,5) = (38,6, 12), or equivalently, (19, 3, 6).

(c) |[VV(3,4,5)] = v/382 + 62 + 122 = /1624 = 2/406
— —
35. A unit vector in the direction of AB is i and a unit vector in the direction of AC'is j. Thus DA—B> f(1,3) = f2(1,3) =3 and
D F(1,3) = f,(1,3) = 26. Therefore Vf(1,3) = (fz(1,3), f,(1,3)) = (3,26), and by definition,
DE f(1,3) = Vf - u where u is a unit vector in the direction of AD which is <13, 13> Therefore,

D f(1,3)=(3,26) - (5, 13) =355 + 26 13 = 5.

37 (a)v(au+bv):<8(au+bv)78(au+bv)>:<a@+b%,a@+b@>:a<a_u @>+b<@,@>

Ox Oy Ox oz’ Oy Oy ox’ Oy ox’ Oy
=aVu+bVv
ov  Ou ov ou Ou ov Ov
(b) V(uv) = <U—+ua— va——i— 8y> <% a—>+u<%,a—y>—vVu+qu
ou Ov <8u ou v v
V— — U — —, =
dy y ox’ 8y oz’ Oy vVu—uVv
(C)V < 02 > V2 = V2

(9( ) a(un) nfl% nfl% _ n—1
(d) Vu™ < oz oy ={nu ax,nu 3y =nu Vu

39. Let F(z,y,2) = 2(x — 2)* + (y — 1)® + (2 — 3)%. Then 2(z — 2)®> + (y — 1) + (2 — 3)® = 10 is a level surface of F.
Fe(z,y,2z) =4(x —2) = F:(3,3,5) =4, Fy(z,y,2) =2(y—1) = Fy(3,3,5) =4,and
F.(z,y,2)=2(z—3) = F.(3,3,5)=4.

(a) Equation 19 gives an equation of the tangent plane at (3,3,5) as4(x — 3) +4(y —3) +4(z —5) =0 <
4x 4+ 4y 4+ 4z = 44 or equivalently x + y + z = 11.

(b) By Equation 20, the normal line has symmetric equations z Z 3 _Y ; 3_z ; > or equivalently

x —3 =y — 3 =z — 5. Corresponding parametric equationsare t =3+ ¢,y =3+, 2 =5+ L.
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Let F(z,y,2) = 2® — 2y® + 2% + yz. Then 2 — 2y* 4 2% + yz = 2 is a level surface of F'

and VF(z,y, z) = (2z, —4y + 2,2z + y).

(a) VF(2,1,—1) = (4,—5, —1) is a normal vector for the tangent plane at (2, 1, —1), so an equation of the tangent plane
isd(x —2)—5(y—1)—1(z+1)=0o0rde — 5y — z = 4.

(b) The normal line has direction (4, —5, —1), so parametric equations are v = 24+ 4¢, y =1 —5¢, z = —1 — t, and

. . r—2 y—1 z+41
symmetric equations are 1 = 5 = R

F(z,y,z) = —z+zeYcosz = VF(z,y,z)=(eYcosz,xe’cosz,—1 —xeYsinz) and VF(1,0,0) = (1,1, —1).
@l(z—1)+1y—0)—1(z—0)=00rz+y—2=1

br—1=y=—=¢

F(z,y,2) =zy+yz+ 2z, VF(x,y,2) = (y+ z,x + 2,y + z), VF(1,1,1) = (2,2, 2), so an equation of the tangent
plane is 2x + 2y + 2z = 6 or x + y + z = 3, and the normal line is givenbyx —1 =y — 1 =z — 1l orx = y = 2. To graph

the surface we solve for z: z = 53— iy
r+y
fla,y) =y = V(zy)=(y,2),Vf(3,2) = (2,3). Vf(3,2) ’
is perpendicular to the tangent line, so the tangent line has equation \
Vf3,2)- (z—3,y—2)=0 = (2,3)-(z—3,2—2)=0 =
2x + 3y =12
2(x —3)+3(y —2) =0o0r2z+ 3y = 12.
0 X

o 2x0 2y0 220 h . fth 1 .

VF(xo0,Y0,20) = 22 ) Thus an equation of the tangent plane at (o, yo, z0) is

% 2y0 220 :2<$_§+y_§
a

2
T+ ==y+ —= 2 2 + z—g> = 2(1) = 2 since (zo, Yo, 20) is a point on the ellipsoid. Hence

x z . .
D+ L y+ —g z = 1 is an equation of the tangent plane.
a c
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220 2o —1 220 2 1 22 292
V F(zo0,y0,20) = <%, %, ?> s0 an equation of the tangent plane is aix—ﬁ— l;yzo A= % + % — %0
or — 220 T+ @ -z +2 at_% + y_g _x But 2 _ T —|— Z-, so the equation can be written as
a2 2 YT a2 b2 ¢’ c b2’ q

21:0 +2ﬂ _z—i—zo.

a2 b2 c

The hyperboloid 2 — 3? — 2% = 1 is a level surface of F(z,vy,2) = 2*> —y* — 2% and VF (z,y, 2) = (2x, -2y, —22) is a
normal vector to the surface and hence a normal vector for the tangent plane at (x, y, z). The tangent plane is parallel to the
plane z = x + y or x + y — z = 0 if and only if the corresponding normal vectors are parallel, so we need a point (xo, Yo, 20)
on the hyperboloid where (220, —2y0, —220) = ¢ (1,1, —1) or equivalently (xo, —yo, —20) = k (1,1, —1) for some k # 0.
Then we must have xo = k, yo = —k, 20 = k and substituting into the equation of the hyperboloid gives

k* —(~k)*> —k® =1 < —k? =1, an impossibility. Thus there is no such point on the hyperboloid.

Let (o, Yo, 20) be a point on the cone [other than (0, 0, 0)]. Then an equation of the tangent plane to the cone at this point is
2xox + 2yoy — 2202 = 2(3&0 = zo) But 3 + y2 = 23 so the tangent plane is given by oz + Yoy — 202 = 0, a plane

which always contains the origin.

Let (x0, Yo, z0) be a point on the surface. Then an equation of the tangent plane at the point is

z Y Z__ V%ot \/ + V7
+ + . But v/zo + /0 + vVzo = Ve, so the equation is
2 Vo 2 Yo 2 V Z

= +/c. The -, y-, and z-intercepts are v/ czo, v/ cyo and v/ czo respectively. (The x-intercept is found

=t

by setting y = z = 0 and solving the resulting equation for x, and the y- and z-intercepts are found similarly.) So the sum of

the intercepts is \/E<\/ To + /Yo + V20 ) = ¢, a constant.

If f(z,y,2) = 2 — 2> — y? and g(x,y, 2) = 4a* + 3> + 22, then the tangent line is perpendicular to both V f and Vg
at (—1,1,2). The vector v = V f x Vg will therefore be parallel to the tangent line.

We have Vf(x,y,z) = (—2z,—2y,1) = Vf(-1,1,2) =(2,-2,1),and Vy(z,y, z) = (8z,2y,2z) =

i j k
Vg(—1,1,2) = (—8,2,4). Hence v =Vf x Vg=| 2 —2 1|=—10i—16j— 12k.
-8 2 4

Parametric equations are: x = —1 — 10¢, y = 1 — 16t, z =2 — 12¢.
(a) The direction of the normal line of F is given by V F, and that of G by VG. Assuming that
VF # 0 # VG, the two normal lines are perpendicular at P if VF - VG =0at P <
(0F )0z, 0F /0y, 0F/0z) - (0G/0x,0G/0y,0G/0z) =0at P & F,Gy,+ F,G,+ F.G;=0atP.

(b)Here F = 2®> + 4?2 — 22 and G = 22 + y® + 2% — r?, so0
F-VG = (2x,2y, —22) - (2x,2y, 22) = 4x® + 4y — 42% = 4F = 0, since the point (z, y, z) lies on the graph of
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F = 0. To see that this is true without using calculus, note that G = 0 is the equation of a sphere centered at the origin and
F' = 0 is the equation of a right circular cone with vertex at the origin (which is generated by lines through the origin).
At any point of intersection, the sphere’s normal line (which passes through the origin) lies on the cone, and thus is

perpendicular to the cone’s normal line. So the surfaces with equations F' = 0 and G = 0 are everywhere orthogonal.

Let u = (a,b) and v = (¢, d). Then we know that at the given point, Dy, f = Vf-u = af. + bf, and
D, f=Vf.-v=cf, + df,. But these are just two linear equations in the two unknowns f, and f,, and since u and v

are not parallel, we can solve the equations to find V f = (f5, f,) at the given point. In fact,

Vf— dDuwf—bDyvf aDy f—cDyf
- ad — be ’ ad — be ’

15.7 Maximum and Minimum Values ET 14.7

1.

fry) =920 +4y—2* —4y* = fo=-2-2x2 f, =48y,

(a) First we compute D(1,1) = fur(1,1) fiyy (1, 1) — [fay (1, 1)) = (4)(2) — (1)® = 7. Since D(1,1) > 0 and
fax(1,1) > 0, f has a local minimum at (1, 1) by the Second Derivatives Test.

(1) D(1,1) = fuu(1,1) fuyy(1,1) — [fay(1,1)]* = (4)(2) — (3)® = —1. Since D(1,1) < 0, f has a saddle point at (1, 1)

by the Second Derivatives Test.

. In the figure, a point at approximately (1, 1) is enclosed by level curves which are oval in shape and indicate that as we move

away from the point in any direction the values of f are increasing. Hence we would expect a local minimum at or near (1, 1).
The level curves near (0, 0) resemble hyperbolas, and as we move away from the origin, the values of f increase in some
directions and decrease in others, so we would expect to find a saddle point there.

To verify our predictions, we have f(z,y) =4 +2° + vy —3zy = fo(x,y) = 32% — 3y, fy(2,y) = 3y* — 3. We
have critical points where these partial derivatives are equal to 0: 322 — 3y = 0, 3y? — 3z = 0. Substituting y = =2 from the
first equation into the second equation gives 3(z*)> —~3z =0 = 3x(z® —1)=0 = = 0orx = 1. Then we have
two critical points, (0, 0) and (1, 1). The second partial derivatives are fr.(x,y) = 6z, foy(x,y) = —3, and fy,(z,y) = 6y,
50 D(2,y) = fou(2,y) fyu(@,y) = [foy(2,)]* = (62)(6y) — (—3)* = 362y — 9. Then D(0,0) = 36(0)(0) — 9 = —9,
and D(1,1) = 36(1)(1) — 9 = 27. Since D(0,0) < 0, f has a saddle point at (0, 0) by the Second Derivatives Test. Since
D(1,1) > 0and fz,(1,1) > 0, f has a local minimum at (1, 1).

f;vz = _29 f:cy - 07 fyy = —8. Then fw =0and fy = Olmply
2 = —1andy = %, and the only critical pointis (—1, 3).

D(,Y) = foefyy — (foy)® = (—2)(—8) — 0% = 16, and since

D(-1,3) =16 > 0and fux(—1,3) = -2<0, f(-1,3) = 1lisa

local maximum by the Second Derivatives Test.



