
15 PARTIAL DERIVATIVES ET 14

15.1 Functions of Several Variables ET 14.1

1. (a) From Table 1, ( 15 40) = 27, which means that if the temperature is 15 C and the wind speed is 40 km h, then the

air would feel equivalent to approximately 27 C without wind.

(b) The question is asking: when the temperature is 20 C, what wind speed gives a wind-chill index of 30 C? From

Table 1, the speed is 20 km h.

(c) The question is asking: when the wind speed is 20 km h, what temperature gives a wind-chill index of 49 C? From

Table 1, the temperature is 35 C.

(d) The function = ( 5 ) means that we x at 5 and allow to vary, resulting in a function of one variable. In

other words, the function gives wind-chill index values for different wind speeds when the temperature is 5 C. From

Table 1 (look at the row corresponding to = 5), the function decreases and appears to approach a constant value as

increases.

(e) The function = ( 50) means that we x at 50 and allow to vary, again giving a function of one variable. In

other words, the function gives wind-chill index values for different temperatures when the wind speed is 50 km h . From

Table 1 (look at the column corresponding to = 50), the function increases almost linearly as increases.

3. If the amounts of labor and capital are both doubled, we replace in the function with 2 2 , giving

(2 2 ) = 1 01(2 )0 75(2 )0 25 = 1 01(20 75)(20 25) 0 75 0 25 = (21)1 01 0 75 0 25 = 2 ( )

Thus, the production is doubled. It is also true for the general case ( ) = 1 :

(2 2 ) = (2 ) (2 )1 = (2 )(21 ) 1 = (2 +1 ) 1 = 2 ( ).

5. (a) According to Table 4, (40 15) = 25, which means that if a 40-knot wind has been blowing in the open sea for 15 hours,

it will create waves with estimated heights of 25 feet.

(b) = (30 ) means we x at 30 and allow to vary, resulting in a function of one variable. Thus here, = (30 )

gives the wave heights produced by 30-knot winds blowing for hours. From the table (look at the row corresponding to

= 30), the function increases but at a declining rate as increases. In fact, the function values appear to be approaching a

limiting value of approximately 19, which suggests that 30-knot winds cannot produce waves higher than about 19 feet.

(c) = ( 30) means we x at 30, again giving a function of one variable. So, = ( 30) gives the wave heights

produced by winds of speed blowing for 30 hours. From the table (look at the column corresponding to = 30), the

function appears to increase at an increasing rate, with no apparent limiting value. This suggests that faster winds (lasting

30 hours) always create higher waves.

7. (a) (2 0) = 22 3(2)(0) = 4(1) = 4

(b) Since both 2 and the exponential function are de ned everywhere, 2 3 is de ned for all choices of values for and .

Thus the domain of is R2.
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(c) Because the range of ( ) = 3 is R, and the range of is (0 ), the range of ( ) = 3 is (0 ).

The range of 2 is [0 ), so the range of the product 2 3 is [0 ).

9. (a) (2 1 6) = 6 22 ( 1)2 = 1 = .

(b) 2 2 is de ned when 2 2 0 2 + 2. Thus the domain of is ( ) | 2 + 2 .

(c) Since 2 2 0, we have 2 2
1. Thus the range of is [1 ).

11. + is de ned only when + 0, or . So

the domain of is {( ) | }.
13. ln(9 2 9 2) is de ned only when

9 2 9 2 0, or 1
9

2 + 2 1. So the domain of

is ( ) 1
9

2 + 2 1 , the interior of an ellipse.

15. 1 2 is de ned only when 1 2 0, or 2 1

1 1, and 1 2 is de ned only when

1 2 0, or 2 1 1 1. Thus the

domain of is {( ) | 1 1 1 1}.

17. 2 is de ned only when 2 0, or 2.

In addition, is not de ned if 1 2 = 0

= ±1. Thus the domain of is

( ) | 2 6= ±1 .

19. We need 1 2 2 2 0 or 2 + 2 + 2 1,

so = ( ) | 2 + 2 + 2 1 (the points inside

or on the sphere of radius 1, center the origin).

21. = 3, a horizontal plane through the point (0 0 3).
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23. = 10 4 5 or 4 + 5 + = 10, a plane with

intercepts 2 5, 2, and 10.

25. = 2 + 1, a parabolic cylinder

27. = 4 2 + 2 + 1, an elliptic paraboloid with vertex
at (0 0 1).

29. = 2 + 2 so 2 + 2 = 2 and 0, the top half

of a right circular cone.

31. The point ( 3 3) lies between the level curves with -values 50 and 60. Since the point is a little closer to the level curve with

= 60, we estimate that ( 3 3) 56. The point (3 2) appears to be just about halfway between the level curves with

-values 30 and 40, so we estimate (3 2) 35. The graph rises as we approach the origin, gradually from above, steeply

from below.

33. Near , the level curves are very close together, indicating that the terrain is quite steep. At , the level curves are much

farther apart, so we would expect the terrain to be much less steep than near , perhaps almost at.

35. 37.
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39. The level curves are ( 2 )2 = or = 2 ± ,

0, a family of pairs of parallel lines.

41. The level curves are ln = or = ln + .

43. The level curves are = or = , a family of

exponential curves.

45. The level curves are 2 2 = or 2 2 = 2,

0. When = 0 the level curve is the pair of lines

= ± . For 0, the level curves are hyperbolas with

axis the -axis.

47. The contour map consists of the level curves = 2 + 9 2, a family of
ellipses with major axis the -axis. (Or, if = 0, the origin.)

The graph of ( ) is the surface = 2 + 9 2, an elliptic paraboloid.

If we visualize lifting each ellipse = 2 + 9 2 of the contour map to the plane
= , we have horizontal traces that indicate the shape of the graph of .

49. The isothermals are given by = 100 (1 + 2 + 2 2) or
2 + 2 2 = (100 ) [0 100], a family of ellipses.
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51. ( ) =
2

+ 2 2

53. ( ) = 2 3

The traces parallel to the -plane (such as the left-front trace in the graph above) are parabolas; those parallel to the -plane
(such as the right-front trace) are cubic curves. The surface is called a monkey saddle because a monkey sitting on the surface
near the origin has places for both legs and tail to rest.

55. (a) C (b) II
Reasons: This function is periodic in both and , and the function is the same when is interchanged with , so its graph is
symmetric about the plane = . In addition, the function is 0 along the - and -axes. These conditions are satis ed only by
C and II.

57. (a) F (b) I
Reasons: This function is periodic in both and but is constant along the lines = + , a condition satis ed only by F and
I.

59. (a) B (b) VI
Reasons: This function is 0 along the lines = ±1 and = ±1. The only contour map in which this could occur is VI. Also
note that the trace in the -plane is the parabola = 1 2 and the trace in the -plane is the parabola = 1 2, so the
graph is B.

61. = + 3 + 5 is a family of parallel planes with normal vector h1 3 5i.

63. = 2 2 + 2 are the equations of the level surfaces. For = 0, the surface is a right circular cone with vertex the origin
and axis the -axis. For 0, we have a family of hyperboloids of one sheet with axis the -axis. For 0, we have a
family of hyperboloids of two sheets with axis the -axis.

65. (a) The graph of is the graph of shifted upward 2 units.

(b) The graph of is the graph of stretched vertically by a factor of 2.

(c) The graph of is the graph of re ected about the -plane.

(d) The graph of ( ) = ( ) + 2 is the graph of re ected about the -plane and then shifted upward 2 units.
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67. ( ) = 3 4 4 2 10

Three-dimensional view Front view

It does appear that the function has a maximum value, at the higher of the two “hilltops.” From the front view graph, the

maximum value appears to be approximately 15. Both hilltops could be considered local maximum points, as the values of

there are larger than at the neighboring points. There does not appear to be any local minimum point; although the valley shape

between the two peaks looks like a minimum of some kind, some neighboring points have lower function values.

69. ( ) =
+

2 + 2
. As both and become large, the function values

appear to approach 0, regardless of which direction is considered. As

( ) approaches the origin, the graph exhibits asymptotic behavior.

From some directions, ( ) , while in others ( ) .

(These are the vertical spikes visible in the graph.) If the graph is

examined carefully, however, one can see that ( ) approaches 0

along the line = .

71. ( ) =
2+ 2

. First, if = 0, the graph is the cylindrical surface

=
2

(whose level curves are parallel lines). When 0, the vertical trace

above the -axis remains xed while the sides of the surface in the -direction

“curl” upward, giving the graph a shape resembling an elliptic paraboloid. The

level curves of the surface are ellipses centered at the origin.

= 0

For 0 1, the ellipses have major axis the -axis and the eccentricity increases as 0.

= 0 5 (level curves in increments of 1)
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For = 1 the level curves are circles centered at the origin.

= 1 (level curves in increments of 1)

When 1, the level curves are ellipses with major axis the -axis, and the eccentricity increases as increases.

= 2 (level curves in increments of 4)

For values of 0, the sides of the surface in the -direction curl downward and approach the -plane (while the vertical

trace = 0 remains xed), giving a saddle-shaped appearance to the graph near the point (0 0 1). The level curves consist of

a family of hyperbolas. As decreases, the surface becomes atter in the -direction and the surface’s approach to the curve in

the trace = 0 becomes steeper, as the graphs demonstrate.

= 0 5 (level curves in increments of 0 25)

= 2 (level curves in increments of 0 25)
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73. = 2 + 2 + . When 2, the surface intersects the plane = 6= 0 in a hyperbola. (See graph below.) It intersects
the plane = in the parabola = (2 + ) 2, and the plane = in the parabola = (2 ) 2. These parabolas open in

opposite directions, so the surface is a hyperbolic paraboloid.

When = 2 the surface is = 2 + 2 2 = ( )2. So the surface is constant along each line = . That

is, the surface is a cylinder with axis = 0, = 0. The shape of the cylinder is determined by its intersection with the

plane + = 0, where = 4 2, and hence the cylinder is parabolic with minima of 0 on the line = .

= 5, = 2 = 10 = 2

When 2 0, 0 for all and . If and have the same sign, then

2 + 2 + 2 + 2 2 = ( )2 0. If they have opposite signs, then 0. The intersection with the

surface and the plane = 0 is an ellipse (see graph below). The intersection with the surface and the planes = 0 and

= 0 are parabolas = 2 and = 2 respectively, so the surface is an elliptic paraboloid.

When 0 the graphs have the same shape, but are re ected in the plane = 0, because

2 + 2 + = ( )2 + 2 + ( )( ) . That is, the value of is the same for at ( ) as it is for at ( ).

= 1, = 2 = 0 = 10

So the surface is an elliptic paraboloid for 0 2, a parabolic cylinder for = 2, and a hyperbolic paraboloid for 2.

75. (a) = 1 = = ln = ln

ln = ln + ln

(b) We list the values for ln( ) and ln( ) for the years 1899 –1922. (Historically, these values were rounded to

2 decimal places.)
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53. = cos + sin and = sin + cos . Then

2

2
= cos

2

2
cos +

2

sin + sin
2

2
sin +

2

cos

= cos2
2

2
+ 2 cos sin

2

+ sin2
2

2

and
2

2 = cos + ( sin )
2

2
( sin ) +

2

cos

sin + cos
2

2
cos +

2

( sin )

= cos sin + 2 sin2
2

2
2 2 cos sin

2

+ 2 cos2
2

2

Thus
2

2
+
1
2

2

2 +
1

= (cos2 + sin2 )
2

2
+ sin2 + cos2

2

2

1
cos

1
sin +

1
cos + sin

=
2

2
+

2

2
as desired.

55. (a) Since is a polynomial, it has continuous second-order partial derivatives, and

( ) = ( )2( ) + 2( )( )2 + 5( )3 = 3 2 + 2 3 2 + 5 3 3 = 3( 2 + 2 2 + 5 3) = 3 ( ).

Thus, is homogeneous of degree 3.

(b) Differentiating both sides of ( ) = ( ) with respect to using the Chain Rule, we get

( ) = [ ( )]

( )
( ) · ( )

+
( )

( ) · ( )
=

( )
( ) +

( )
( ) = 1 ( ).

Setting = 1: ( ) + ( ) = ( ).

57. Differentiating both sides of ( ) = ( ) with respect to using the Chain Rule, we get

( ) = [ ( )]

( )
( ) · ( )

+
( )

( ) · ( )
= ( ) ( ) = ( ).

Thus ( ) = 1 ( ).

15.6 Directional Derivatives and the Gradient Vector ET 14.6

1. We can approximate the directional derivative of the pressure function at K in the direction of S by the average rate of change
of pressure between the points where the red line intersects the contour lines closest to K (extend the red line slightly at the

left). In the direction of S, the pressure changes from 1000 millibars to 996 millibars and we estimate the distance between

these two points to be approximately 50 km (using the fact that the distance from K to S is 300 km). Then the rate of change of

pressure in the direction given is approximately 996 1000
50

= 0 08 millibar km.
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3. u ( 20 30) = ( 20 30) · u = ( 20 30) 1

2
+ ( 20 30) 1

2
.

( 20 30) = lim
0

( 20 + 30) ( 20 30) , so we can approximate ( 20 30) by considering = ±5 and

using the values given in the table: ( 20 30)
( 15 30) ( 20 30)

5
=

26 ( 33)

5
= 1 4,

( 20 30)
( 25 30) ( 20 30)

5
=

39 ( 33)

5
= 1 2. Averaging these values gives ( 20 30) 1 3.

Similarly, ( 20 30) = lim
0

( 20 30 + ) ( 20 30) , so we can approximate ( 20 30) with = ±10:

( 20 30)
( 20 40) ( 20 30)

10
=

34 ( 33)

10
= 0 1,

( 20 30)
( 20 20) ( 20 30)

10
=

30 ( 33)

10
= 0 3. Averaging these values gives ( 20 30) 0 2.

Then u ( 20 30) 1 3 1

2
+ ( 0 2) 1

2
0 778.

5. ( ) = ( ) = and ( ) = . If u is a unit vector in the direction of = 2 3, then

from Equation 6, u (0 4) = (0 4) cos 2
3
+ (0 4) sin 2

3
= 4 · 1

2
+ 1 · 3

2 = 2+ 3
2 .

7. ( ) = sin(2 + 3 )

(a) ( ) = i+ j = [cos(2 + 3 ) · 2] i+ [cos(2 + 3 ) · 3] j = 2 cos (2 + 3 ) i+ 3 cos (2 + 3 ) j

(b) ( 6 4) = (2 cos 0)i+ (3 cos 0)j = 2 i+ 3 j

(c) By Equation 9, u ( 6 4) = ( 6 4) · u = (2 i+ 3 j) · 1
2

3 i j = 1
2
2 3 3 = 3 3

2
.

9. ( ) = 2

(a) ( ) = h ( ) ( ) ( )i = 2 2 2 2 2

(b) (3 0 2) = h1 12 0i

(c) By Equation 14, u (3 0 2) = (3 0 2) · u = h1 12 0i · 2
3

2
3

1
3
= 2

3
24
3
+ 0 = 22

3
.

11. ( ) = 1 + 2 ( ) = 2 2 · 1
2

1 2 = 2 , (3 4) = 4 3
2
, and a unit vector in

the direction of v is u = 1

42 + ( 3)2
h4 3i = 4

5
3
5
, so u (3 4) = (3 4) · u = 4 3

2
· 4

5
3
5
= 23

10 .

13. ( ) = 4 2 3 ( ) = 4 3 2 3 i+ 3 2 2 j, (2 1) = 28 i 12 j, and a unit

vector in the direction of v is u = 1

12+32
(i + 3 j) = 1

10
(i + 3 j), so

u (2 1) = (2 1) · u = (28 i 12 j) · 1

10
(i+ 3 j) = 1

10
(28 36) = 8

10
or 4 10

5
.

15. ( ) = + + ( ) = h + + + i, (0 0 0) = h1 1 1i, and a unit
vector in the direction of v is u = 1

25+1+4
h5 1 2i = 1

30
h5 1 2i, so

u (0 0 0) = (0 0 0) · u = h1 1 1i · 1

30
h5 1 2i = 4

30
.
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17. ( ) = ( + 2 + 3 )3 2

( ) = 3
2
( + 2 + 3 )1 2(1) 3

2
( + 2 + 3 )1 2(2) 3

2
( + 2 + 3 )1 2(3)

= 3
2

+ 2 + 3 3 + 2 + 3 9
2

+ 2 + 3 , (1 1 2) = 9
2
9 27

2
,

and a unit vector in the direction of v = 2 j k is u = 2

5
j 1

5
k, so

u (1 1 2) = 9
2 9

27
2
· 0 2

5

1

5
= 18

5

27

2 5
= 9

2 5
.

19. ( ) = ( ) = 1
2
( ) 1 2( ) 1

2
( ) 1 2( ) =

2 2
, so (2 8) = 1 1

4
.

The unit vector in the direction of = h5 2 4 8i = h3 4i is u = 3
5

4
5
, so

u (2 8) = (2 8) · u = 1 1
4
· 3

5
4
5
= 2

5
.

21. ( ) = 2 = 2 1 ( ) = 2 2 2 1 = 2 2 2 .

(2 4) = h 4 4i, or equivalently h 1 1i, is the direction of maximum rate of change, and the maximum rate
is | (2 4)| = 16 + 16 = 4 2.

23. ( ) = sin( ) ( ) = h cos( ) cos( )i, (1 0) = h0 1i. Thus the maximum rate of change is
| (1 0)| = 1 in the direction h0 1i.

25. ( ) = 2 + 2 + 2

( ) = 1
2
( 2 + 2 + 2) 1 2 · 2 1

2
( 2 + 2 + 2) 1 2 · 2 1

2
( 2 + 2 + 2) 1 2 · 2

=
2 + 2 + 2 2 + 2 + 2 2 + 2 + 2

(3 6 2) = 3

49

6

49

2

49
= 3

7
6
7

2
7
. Thus the maximum rate of change is

| (3 6 2)| = 3
7

2
+ 6

7

2
+ 2

7

2
= 9+ 36+ 4

49
= 1 in the direction 3

7
6
7

2
7
or equivalently h3 6 2i.

27. (a) As in the proof of Theorem 15, u = | | cos . Since the minimum value of cos is 1 occurring when = , the

minimum value of u is | | occurring when = , that is when u is in the opposite direction of

(assuming 6= 0).

(b) ( ) = 4 2 3 ( ) = 4 3 2 3 4 3 2 2 , so decreases fastest at the point (2 3) in the

direction (2 3) = h12 92i = h 12 92i.

29. The direction of fastest change is ( ) = (2 2) i+ (2 4) j, so we need to nd all points ( ) where ( ) is

parallel to i+ j (2 2) i+ (2 4) j = (i+ j) = 2 2 and = 2 4. Then 2 2 = 2 4

= + 1 so the direction of fastest change is i+ j at all points on the line = + 1.
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31. =
2 + 2 + 2

and 120 = (1 2 2) =
3
so = 360.

(a) u = h1 1 1i
3

,

u (1 2 2) = (1 2 2) ·u = 360 2 + 2 + 2 3 2h i
(1 2 2)

·u = 40
3
h1 2 2i · 1

3
h1 1 1i = 40

3 3

(b) From (a), = 360 2 + 2 + 2 3 2h i, and since h i is the position vector of the point ( ), the

vector h i, and thus , always points toward the origin.

33. ( ) = h10 3 + 3 i, (3 4 5) = h38 6 12i
(a) u (3 4 5) = h38 6 12i · 1

3
h1 1 1i = 32

3

(b) (3 4 5) = h38 6 12i, or equivalently, h19 3 6i.

(c) | (3 4 5)| = 382 + 62 + 122 = 1624 = 2 406

35. A unit vector in the direction of is i and a unit vector in the direction of is j. Thus (1 3) = (1 3) = 3 and

(1 3) = (1 3) = 26. Therefore (1 3) = h (1 3) (1 3)i = h3 26i, and by de nition,

(1 3) = · u where u is a unit vector in the direction of , which is 5
13

12
13
. Therefore,

(1 3) = h3 26i · 5
13

12
13

= 3 · 5
13
+ 26 · 12

13
= 327

13
.

37. (a) ( + ) =
( + ) ( + )

= + + = +

= +

(b) ( ) = + + = + = +

(c) =
2 2

=
2

=
2

(d) =
( ) ( )

= 1 1 = 1

39. Let ( ) = 2( 2)2 + ( 1)2 + ( 3)2. Then 2( 2)2 + ( 1)2 + ( 3)2 = 10 is a level surface of .

( ) = 4( 2) (3 3 5) = 4, ( ) = 2( 1) (3 3 5) = 4, and

( ) = 2( 3) (3 3 5) = 4.

(a) Equation 19 gives an equation of the tangent plane at (3 3 5) as 4( 3) + 4( 3) + 4( 5) = 0

4 + 4 + 4 = 44 or equivalently + + = 11.

(b) By Equation 20, the normal line has symmetric equations 3

4
=

3

4
=

5

4
or equivalently

3 = 3 = 5. Corresponding parametric equations are = 3 + , = 3 + , = 5 + .
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41. Let ( ) = 2 2 2 + 2 + . Then 2 2 2 + 2 + = 2 is a level surface of

and ( ) = h2 4 + 2 + i.
(a) (2 1 1) = h4 5 1i is a normal vector for the tangent plane at (2 1 1), so an equation of the tangent plane

is 4( 2) 5( 1) 1( + 1) = 0 or 4 5 = 4.

(b) The normal line has direction h4 5 1i, so parametric equations are = 2 + 4 , = 1 5 , = 1 , and

symmetric equations are 2

4
=

1

5
=

+ 1

1
.

43. ( ) = + cos ( ) = h cos cos 1 sin i and (1 0 0) = h1 1 1i.
(a) 1( 1) + 1( 0) 1( 0) = 0 or + = 1

(b) 1 = =

45. ( ) = + + , ( ) = h + + + i, (1 1 1) = h2 2 2i, so an equation of the tangent
plane is 2 + 2 + 2 = 6 or + + = 3, and the normal line is given by 1 = 1 = 1 or = = . To graph

the surface we solve for : =
3

+
.

47. ( ) = ( ) = h i, (3 2) = h2 3i. (3 2)

is perpendicular to the tangent line, so the tangent line has equation

(3 2) · h 3 2i = 0 h2 3i · h 3 2i = 0
2( 3) + 3( 2) = 0 or 2 + 3 = 12.

49. ( 0 0 0) =
2 0

2

2 0

2

2 0

2
. Thus an equation of the tangent plane at ( 0 0 0) is

2 0

2
+
2 0

2
+
2 0

2
= 2

2
0

2
+

2
0

2
+

2
0

2
= 2(1) = 2 since ( 0 0 0) is a point on the ellipsoid. Hence

0

2
+

0

2
+

0

2
= 1 is an equation of the tangent plane.
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51. ( 0 0 0) =
2 0

2

2 0

2

1 , so an equation of the tangent plane is 2 0

2
+
2 0

2

1
=
2 2

0

2
+
2 2

0

2

0

or 2 0

2
+
2 0

2
= + 2

2
0

2
+

2
0

2

0 . But 0
=

2
0

2
+

2
0

2
, so the equation can be written as

2 0

2
+
2 0

2
=

+ 0 .

53. The hyperboloid 2 2 2 = 1 is a level surface of ( ) = 2 2 2 and ( ) = h2 2 2 i is a
normal vector to the surface and hence a normal vector for the tangent plane at ( ). The tangent plane is parallel to the

plane = + or + = 0 if and only if the corresponding normal vectors are parallel, so we need a point ( 0 0 0)

on the hyperboloid where h2 0 2 0 2 0i = h1 1 1i or equivalently h 0 0 0i = h1 1 1i for some 6= 0.
Then we must have 0 = , 0 = , 0 = and substituting into the equation of the hyperboloid gives

2 ( )2 2 = 1 2 = 1, an impossibility. Thus there is no such point on the hyperboloid.

55. Let ( 0 0 0) be a point on the cone [other than (0 0 0)]. Then an equation of the tangent plane to the cone at this point is

2 0 + 2 0 2 0 = 2 2
0 +

2
0

2
0 . But 2

0 +
2
0 =

2
0 so the tangent plane is given by 0 + 0 0 = 0, a plane

which always contains the origin.

57. Let ( 0 0 0) be a point on the surface. Then an equation of the tangent plane at the point is

2 0

+
2 0

+
2 0

=
0 + 0 + 0

2
. But 0 + 0 + 0 = , so the equation is

0

+
0

+
0

= . The -, -, and -intercepts are 0, 0 and 0 respectively. (The -intercept is found

by setting = = 0 and solving the resulting equation for , and the - and -intercepts are found similarly.) So the sum of

the intercepts is 0 + 0 + 0 = , a constant.

59. If ( ) = 2 2 and ( ) = 4 2 + 2 + 2, then the tangent line is perpendicular to both and

at ( 1 1 2). The vector v = × will therefore be parallel to the tangent line.

We have ( ) = h 2 2 1i ( 1 1 2) = h2 2 1i, and ( ) = h8 2 2 i

( 1 1 2) = h 8 2 4i. Hence v = × =

i j k

2 2 1

8 2 4

= 10 i 16 j 12k.

Parametric equations are: = 1 10 , = 1 16 , = 2 12 .

61. (a) The direction of the normal line of is given by , and that of by . Assuming that

6= 0 6= , the two normal lines are perpendicular at if · = 0 at

h i · h i = 0 at + + = 0 at .

(b) Here = 2 + 2 2 and = 2 + 2 + 2 2, so

· = h2 2 2 i · h2 2 2 i = 4 2 + 4 2 4 2 = 4 = 0, since the point ( ) lies on the graph of
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= 0. To see that this is true without using calculus, note that = 0 is the equation of a sphere centered at the origin and

= 0 is the equation of a right circular cone with vertex at the origin (which is generated by lines through the origin).

At any point of intersection, the sphere’s normal line (which passes through the origin) lies on the cone, and thus is

perpendicular to the cone’s normal line. So the surfaces with equations = 0 and = 0 are everywhere orthogonal.

63. Let u = h i and v = h i. Then we know that at the given point, u = · u = + and

v = · v = + . But these are just two linear equations in the two unknowns and , and since u and v

are not parallel, we can solve the equations to nd = h i at the given point. In fact,

=
u v v u .

15.7 Maximum and Minimum Values ET 14.7

1. (a) First we compute (1 1) = (1 1) (1 1) [ (1 1)]2 = (4)(2) (1)2 = 7. Since (1 1) 0 and

(1 1) 0, has a local minimum at (1 1) by the Second Derivatives Test.

(b) (1 1) = (1 1) (1 1) [ (1 1)]2 = (4)(2) (3)2 = 1. Since (1 1) 0, has a saddle point at (1 1)

by the Second Derivatives Test.

3. In the gure, a point at approximately (1 1) is enclosed by level curves which are oval in shape and indicate that as we move

away from the point in any direction the values of are increasing. Hence we would expect a local minimum at or near (1 1).

The level curves near (0 0) resemble hyperbolas, and as we move away from the origin, the values of increase in some

directions and decrease in others, so we would expect to nd a saddle point there.

To verify our predictions, we have ( ) = 4 + 3 + 3 3 ( ) = 3 2 3 , ( ) = 3 2 3 . We

have critical points where these partial derivatives are equal to 0: 3 2 3 = 0, 3 2 3 = 0. Substituting = 2 from the

rst equation into the second equation gives 3( 2)2 3 = 0 3 ( 3 1) = 0 = 0 or = 1. Then we have

two critical points, (0 0) and (1 1). The second partial derivatives are ( ) = 6 , ( ) = 3, and ( ) = 6 ,

so ( ) = ( ) ( ) [ ( )]2 = (6 )(6 ) ( 3)2 = 36 9. Then (0 0) = 36(0)(0) 9 = 9,

and (1 1) = 36(1)(1) 9 = 27. Since (0 0) 0, has a saddle point at (0 0) by the Second Derivatives Test. Since

(1 1) 0 and (1 1) 0, has a local minimum at (1 1).

5. ( ) = 9 2 + 4 2 4 2 = 2 2 , = 4 8 ,

= 2, = 0, = 8. Then = 0 and = 0 imply

= 1 and = 1
2
, and the only critical point is 1 1

2
.

( ) = ( )2 = ( 2)( 8) 02 = 16, and since

1 1
2
= 16 0 and 1 1

2
= 2 0, 1 1

2
= 11 is a

local maximum by the Second Derivatives Test.


