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37. The area of the rectangle is A = xy, and AA ~ dA is an estimate of the area of paint in the stripe. Here dA = y dzx + x dy,
sowith dz = dy = 353 = 2, AA ~ dA = (100)(3) + (200)(3) = 150 ft*. Thus there are approximately 150 ft* of paint
in the stripe.

. OR . ... . . o . .

39. First we find ETTh implicitly by taking partial derivatives of both sides with respect to R :
1

a (1 d[(1/R1) + (1/Rz2) + (1/R3)] _, OR 5 OR R?
— =)= — — = —— = —. Thenb t
OR, <R> oR, > RUgg = BR,  RZ o |onPysymmetry,

OR R* OR R’ 117
— = =, =—— = —5. When R; =25, R, =40 and R3 =50, = = — R=20q.
OR, Rl 0R, Rz i fn=alandin =0l p = on < 7
Since the possible error for each R; is 0.5%, the maximum error of R is attained by setting AR; = 0.005R;. So
OR OR OR 1 1 1
AR~ dR = — ARy + — AR + — AR3 = (0.005)R*( — + — + — | = (0.005)R = & ~ 0.059 Q2.
R, “h T gR, At T g, At = (0005) <R1+R2+R3) (0:005) = w7
. Aw Ah . .

41. The errors in measurement are at most 2%, so v < 0.02 and 7 < 0.02. The relative error in the calculated surface

area is

AS dS  0.1091(0.425w® 42~ 1)h0- 725 day + 0.1091w 425 (0.725h°- 7257 1) dh, dw dh

IR 0.1091w0-4250.725 = 04257 +0.7255
To estimate the maximum relative error, we use d_w = & = 0.02 and @ = M =0.02 =

w w h h
ds . . .
< = 0.425 (0.02) 4 0.725 (0.02) = 0.023. Thus the maximum percentage error is approximately 2.3%.
43. Az = f(a+ Az,b+ Ay) — f(a,b) = (a + Ax)* + (b+ Ay)? — (a® +b?)
=a?+2a Az + (Ax)? + 0% + 20 Ay + (Ay)? — a® — b* = 2a Az + (Az)? + 20 Ay + (Ay)?

But fz(a,b) = 2a and fy(a,b) = 2band so Az = fy(a,b) Az + f,(a,b) Ay + Az Az + Ay Ay, which is Definition 7
with e;1 = Az and e; = Ay. Hence f is differentiable.

45. To show that f is continuous at (a, b) we need to show that ( %nn( N f(z,y) = f(a,b) or

x,y)—(a,
equivalently lim fla+ Az,b+ Ay) = f(a,b). Since f is differentiable at (a,b),
(Az,Ay)—(0,0)
fla+ Az, b+ Ay) — f(a,b) = Az = fu(a,b) Az + fy(a,b) Ay + €1 Ax + €2 Ay, where €1 and e2 — 0 as
(Az, Ay) — (0,0). Thus f(a+ Az, b+ Ay) = f(a,b) + fz(a,b) Az + fy(a,b) Ay + e1 Az + 2 Ay. Taking the limit of
both sides as (Az, Ay) — (0,0) gives N Alir)n 0.0 fla+ Az, b+ Ay) = f(a,b). Thus f is continuous at (a, b).
z,AYy)—U,
15.5 The Chain Rule ET 14.5
. dz Ozdx  Ozdy
_ .2 2 _ _ ot ¢z _ Ozdx  Ozay _ ¢
1L z=z*4y  +ay, z=sint, y=e€" = 7 8xdt+8ydt (2z +y) cost + (2y + x)e
.z=/14+224+y% xz=Int, y=-cost =

dz  Ozdx  Ozdy 2, ay—1/2 1 2, 2\—1/2 . _ 1 z ;
= a—ya_§(1+x +y7) T (2e) 5+ (1 +y7) (2y)(—smt)—\/TTy2(;*ysmt)


Michael
Highlight


188 [ CHAPTER15 PARTIAL DERIVATIVES ET CHAPTER 14

5.w:xey/z,x:t2,y:1—t,z:1+2t =
dw Owdr OJwdy Owdz y/ 1 y x  2xy
e e Bt A e S (V) ¥ y/z( 2 ). (=1 y/Z(,_),QZ y/z(op 2 _ 22J
dt Ox dt + Oy dt + 9z dt ¢ +ae z (=1) + e 22 c z 22
7. 2 =2%y3, x =scost, y =ssint =
0: _0:00 020y
0s  O0x O0s Oy 0s

% = %% g—;% = (22y°)(—ssint) + (32%y?)(s cost) = —2sxy® sint + 3sx?y? cost

= 2zy3 cost + 3z2y? sint

9. z=sinfcos¢, 0 =st? ¢=st =

0= _0:00 0200
Os  000s 0O¢ Os

0z _ 0200 0206
ot 000t 0 Ot

= (cos 8 cos ¢)(t?) + (—sin @ sin ¢)(2st) = t* cos § cos ¢ — 2st sin ) sin ¢
= (cos 6 cos ¢)(2st) + (—sin @ sin ¢)(s?) = 2st cosf cos ¢ — s*sin @ sin ¢

M. z=¢"cosl, r==st, 0 =+s2+1t2 =

0z _ 0:0r 0200
ds  Ords 00 0s

=e"cosf-t+ e (—sinf) - 1(s? +12)71/2(2s) = te" cosf — " sin b - 5

NEETE
:e’"(tcos@—ﬁsinﬂ)
%_%& %%_r T o 1/.2 2\—1/2 _ T T 3
% = B 8t+89 5 = © cosf-s+e"(—sinf) - 5(s° + 1) (2t) = se” cos — e" sin 6 W
:GT(SCOSQ—\/S%WSHIG)
13. Whent = 3, z = ¢(3) = 2 and y = h(3) = 7. By the Chain Rule (2),
dz _Ofdz Ofdy _ / '(3) = _8)(—d) —
15. g(u,v) = f(z(u,v),y(u,v)) where x = € +sinv, y = e* + cosv =
O _ . Ov _ 0y _u Oy _ ~ Og9 _0f0x  0f0y
Eoi e, 90 = CoS v, S e, 90— sin v. By the Chain Rule (3), 9u " 9z du 9y ou Then

9(0,0) = fx(2(0,0),y(0,0)) 2u(0,0) + f,(x(0,0),(0,0)) yu(0,0) = fx(1,2)(e”) + fy(1,2)(e") = 2(1) +5(1) = 7.

Similarly, @ _of % g@

v Odxov ' dyov Then

gU(O,O) = fz(x(0,0),y(O, 0)) J)v(0,0) + fy(x(0,0),y(0,0)) yv(oa 0) = fm(1,2)(COSO) + fy(172)(_5in0)
—2(1) +5(0) = 2

/u\ u= f(z,y), © =z(r,s,t), y=y(rs,t) =

y Ou Oudxr Oudy Ou Oudx Oudy Odu Oudr OJuldy

17.

/1N 7

r N

\ Or ozor " oyor 9s 0z0s  Oyos Of 0z 0t Oy ot

N t



19.

21

23. R=

25,

27.

29,
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w

/|
AYARA

z=a+ay’, r=uw? +wd, y=u+ve” =
02 _ 0200, 020y
ou Orodu Oyou
0= _0:00 020y
ov  Oxdv  Oyov
0: _9:00  0:0y
ow Ordw Oyow

Whenu =2,v =1,andw = 0, we have z = 2, y = 3,

0 0z 0z

50 a_z = (31)(1) + (54)(1) = 85, == = (31) (4) + (54)(1) = 178, == = (31)(0) + (54)(1) =

w= f(r,s,t), r=r(z,y), s=s(z,y), t=tx,y) =

\ Ow Owdr Owds Owdt Ow OJwdr OJwds  Odw it
! dr  Or Oz | 0s 0z | Ot Oz’ 8y or 8y s 8y ot 8y

= (2z + %) (v*) + (3zy?)(1),
= (22 + %) (2uv) + (3zy?)(e"),

= (2z + ") (3w?) + (3zy?) (ve").

In(u? +v° +w?), u=2+2y, v=220—y, w=2xy =

OR OROu OROv A OROw 2u 2v 2w

dr  Oudxr | Ovox 8111833_u2+v2+w2(1)+u2+v2+w2(2)+u2+v2+w2(2y)
_ 2u+4v+ 4wy
w4 w2’

OR OROu OROv OROw 2u 2v 2w

By  oudy  owdy  Owdy u+v2+w? (2)+u2+v2+w2 (_1)+u2+v2+w2 (22)

_du—2v+ 4wz
w2424 w?
OR 9 OR 9

Whenz =y =1wehaveu =3,v=1,andw = 2, so%:7anda—y:?.

w=a’+yz, x=prcos, y=prsinf, z=p+r =
Ou Oudr OJudy  Oudz
8p ~ oz 8p Oydp 0z 0p
Ou  Oudxr Oudy  Judz
or oz or Oy Or 0z Or

Ou _ Oudr Oudy  Oudz
00 9z 90 ' 9y | 0z 90

= (2z)(rcos®) + (z)(rsind) + (y)(1) = 2xr cosf + zrsinf + y,
= (2z)(pcosf) + (2)(psinf) + (y)(1) = 2zpcosf + zpsinh + v,

= (2z)(—prsinf) + (z)(prcosb) + (y)(0) = —2zprsinf + zpr cos b.

Whenp =2,7=3,and ) = 0wehavez =6,y = 0,and z = 5, so@—36,@ d@:30.
Op ar a0

Vry =1+ 2%y, solet F(z,y) = (zy)'/? — 1 — 2%y = 0. Then by Equation 6

dy P 3(ey) V) —20y oy —day oy 4(@y)*P -y

de ~  F, Lay)~12(z) —22 g 22 /zy x— 222\ zy

cos(z —y) = xze, so let F(x,y) = cos(x — y) — ze¥ = 0.

Thndy Py —sinz—y)—e’  sin(z—y)+e’
dx F,  —sin(z —y)(—1) —xev  sin(z —y) — zev’

O
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2?4+ y? + 2% = 3xyz, so let F(x,y,2) = #* + y* + 2* — 3zyz = 0. Then by Equations 7
0z F,  2x—3yz 3yz—2 d 0z F,  2y—3zz 3xzz—2y

dxr  F.  2z—3zy 2z-3zy an dy  F.  2z—3zy 2z-3zy

x — z = arctan(yz), so let F(z,y,z) =  — z — arctan(yz) = 0. Then

0z Fu _ 1 1y
or  F, 1_ ()71—|—y—|—y222
1+(y2)2
1 z
e (2) i
Oz Iy 1+(yz) _ 1+y222 z
Jdy F, _ (y) 1422ty 14y +y22?
1+ (yZ)2 14 y222

dI' _0T'dx 0T dy  After

Since z and y are each functions of ¢, T'(x, y) is a function of ¢, so by the Chain Rule, — e dl 8 n

3seconds,x=\/1_—|-t=\/m:2,y=2+%t:2+%(3):3,%: 2\/%: 2\/11_’__3:i d(;?: %
Then tz—T =T.(2, 3) dx -+ T (2, 3) =4(%) +3(3) = 2. Thus the temperature is rising at a rate of 2°C/s.

C = 1449.2 + 4.6T — 0.055T' 2 4 0.000297 % + 0.016 D, so g—g =4.6 —0.117 + 0.000877 2 and g—g = 0.016.
According to the graph, the diver is experiencing a temperature of approximately 12.5°C at ¢ = 20 minutes, so

gg =4.6 — 0.11(12.5) + 0.00087(12.5)? ~ 3.36. By sketching tangent lines at ¢t = 20 to the graphs given, we estimate
% ~ ; nd % ~ _ILO Then, by the Chain Rule, Lfg gg% + g—g% ~ (3.36)(—15) + (0.016)(3) ~ —0.33.

Thus the speed of sound experienced by the diver is decreasing at a rate of approximately 0.33 m/s per minute.

(a) V' = fwh, so by the Chain Rule,

av._ovdé oVdw oV dh al dh oy 3

(b) S = 2(fw + £h + wh), so by the Chain Rule,

dsS 9Sdl 0Sdw 0Sdh dw dh
ol a—wE—F%dt 2(w +h)—+2(£+h)d—+2(€+ )dt
=2(242)2+2(1 +2)2 + 2(1 + 2)(—3) = 10 m?/s
dL dal dw dh
2 _ )2 2 2 -~ _ - e R — =
©LP =€ +w’ +h* = 2L =207 + 20— +2h— =2(1)(2) +2(2)(2) +2(2)(-3) =0 =
dL/dt =0m/s.
dP dT dV  8.31dT T dP
av 0.15  (0.05)(320)] _
—r = 8.31| = 100 ~ —0.27L/s.

Let z be the length of the first side of the triangle and y the length of the second side. The area A of the triangle is given by

A= %xy sin 0 where 0 is the angle between the two sides. Thus A is a function of x, y, and 6, and z, y, and 0 are each in
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turn functions of time ¢. We are given that Ccll_t =3, (cil —2, and because A is constant, CCZZA = 0. By the Chain Rule,
dA _O0Adx  0Ady  0AdY dA

. dx . dy de
a2 =2 221 el § AN L= = =
it ot T oya T o0t = 7 sysind 7 + zxsinf + 3xycosl dt.Whena: 20, y = 30,

dt

and 0 = /6 we have
0= $(30)(sin £)(3) + 3(20)(sin %) (—2) + $(20)(30) (cos %) do

i
—45-1 2014300 % 2—2—25+150\/'

g —-25/2 1
dt 15043 123
1/(12/3) ~ 0.048 rad/s.

Solving for 29 gives — so the angle between the sides is decreasing at a rate of

0z Oz 0z 0z Oz . 0z
45. (a) By the Chain Rule, 3 = 9p © osf + o sin#, %" 92 (—rsinf) + o rcos 6.

02N _ (02 g 0202 0zY . »
(b) (§> = <%> 6+28—8—ycos0 sinf + (8y) sin” 6,

2 2 2
<%) — (%) r2 sin? 9_2%8—7’ 2 cosf sin 6 + (g;) r2 cos? 0. Thus

00 ox Oz Oy

92\ 1 /02 92\ 0z 92\ 92\

(&) +=(%) - [(%) +(7) ]< oranto) = () +(5)-
47.Letu_;z:—yThen%—%@:%and% ( 1). Ths%—i—%zo.

Or dudx du oy or Oy

49. Letu =z + at, v=x — at. Then z = f(u) + g(v), s0 9z/0u = f'(u) and Dz/dv = g'(v).

0z 0z0u 0zdv , ,
Thus ET %E—f—%afaf(u)—ag(v)and

&z _ ’ _ df/(u) Ou dgl(v) v\ _ 5. 2 n
g =g U0 g 0 =a( GG - T ) =t g
Similarly 2 = #(u) + ¢/ (v) and & = f"(u) + ¢" (v). Thus =—= Oz _ 202

e g Da? 9 o2 =Y a2
52 0z 0z

—822 —g %25 —&—2 %21“
Ords  Or \ Ox or \ dy

0%z Ox 0 [0z dy 0z 9 8%z dy 0 [0z Ox 0z
_wa2s+a—(%>a2s+a—g2s+a—y252r %(6_1/)527“4_3_3/2
0%z 0z 0z %z, 0z
=4drs — 4 drs — 4 2—
rs s T Byon 1 H 0T s gt o 4t 2
By the continuity of the partials &z =4rs Oz +4rs——|—(4r + 4s%) 0z —&-2%
y ty ot the partials, 5 56 a2 T e ocoy oy
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53. % gx cos 9—1—2 sinf and g; :—%rsin@—kg—;rcosﬂ. Then
% = cosf <% cosf + 6?/25413 sin@) + sind (g Z §inf + 86282y cos@)
:COSQG%—FQCOSG sin9§%§y+sin29§iyz
and %:—rcosﬁ%—i—(—rsmé)) (222( rsm@)—l—%roosﬂ)

., 0z 0z 0z .
_rsmﬁa—y + rcosf (W rcosf + ——— 920y (—rsm@))

2 2

TCOSQ%TSiHQg—;+T‘QSiH29%2T2C080 sin@ax§y+r2005292—y§
Thus % %%—I—lg = (cos? 0 + sin? 9)—+(sm 6 + cos? Q)ZL
1 059%—% 9%+1<c039%+s 93—5)
= % +giy§ as desired.

55. (a) Since f is a polynomial, it has continuous second-order partial derivatives, and

f(tz, ty) = (tz)?(ty) + 2(tz)(ty)* + 5(ty)® = P2’y + 26%xy” + 5t°y® = 3 (2y + 22> + 5y°) = ¢* f (z,y).

Thus, f is homogeneous of degree 3.

(b) Differentiating both sides of f(tx,ty) = t" f(x, y) with respect to ¢ using the Chain Rule, we get
0 0 n
&f(txaty) - E[t f(fl?,y)} <

5y ftot) - 2+ a(t)f(t 0 B o s St t) v s Fta ) = e f o),

Settingtzl:x(,%f(:c y)+y f(fE y) =nf(z,y).

57. Differentiating both sides of f(tx, ty) = t" f(x, y) with respect to z using the Chain Rule, we get

2 fltwty) = 5o " flwy)]

5 e tn) - H b s faot) - Z 0 ) o t(tt) = O feln)

Thus f. (tx, ty) = t" " fo(2,9).

15.6 Directional Derivatives and the Gradient Vector ET 14.6

1. We can approximate the directional derivative of the pressure function at K in the direction of S by the average rate of change
of pressure between the points where the red line intersects the contour lines closest to K (extend the red line slightly at the
left). In the direction of S, the pressure changes from 1000 millibars to 996 millibars and we estimate the distance between
these two points to be approximately 50 km (using the fact that the distance from K to S is 300 km). Then the rate of change of

pressure in the direction given is approximately 2262900 — —0.08 millibar/km.
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3. Du f(—20,30) = Vf (20,30 - u = fr(—20, 30)( ) + fo(—20, 30)( )

f(=20 + h,30) — f(—20,30)
h

fr(—20,30) = }lLin}) , S0 we can approximate f7(—20, 30) by considering h = +5 and

f(—=15,30) — f(—20,30)  —26 — (—33)
5 n 5

using the values given in the table: fr(—20,30) ~ =14,

£(—25,30) — £(—20,30)  —39 — (—33)

fr(—20,30) ~ = 1.2. Averaging these values gives f7(—20,30) ~ 1.3.

-5 B -5
Similarly, f,(—20,30) = 1 (220,30 + h}z — f(=20,30) , S0 we can approximate f,(—20,30) with h = +10:
£(—20,40) — f(—20,30)  —34 — (—33)
A y ~ = = - '1a
£0(—20, 30) m - 0
Jfv(—20,30) =~ f(_20’20)__10f(_20’30) _ =30 :1(0_33) = —0.3. Averaging these values gives f,(—20,30) ~ —0.2.

Then Dy f(—20, 30)~13( )+( 02)( )%0.778.

x

5 f(z,y) =ye™® = fo(z,y) = —ye “and fy(z,y) = e . If uis a unit vector in the direction of ¢ = 27/3, then

from Equation 6, Dy f(0,4) = f4(0,4) cos(2) + f,(0,4)sin(&) = —4- (=3) +1- L =24 &2,

7. f(z,y) = sin(2z + 3y)

(@) Vf(z,y) = gf + ﬁ_} = [cos(2z 4 3y) - 2] i+ [cos(2z + 3y) - 3] j = 2cos (2z + 3y) i+ 3cos (2z + 3y) j

(b) Vf(—6,4) = (2cos0)i+ (3cos0)j =2i+ 3]
(c) By Equation 9, Dy, f(—6,4) = Vf(—6,4) -u= (2i+3j) - 1(v3i—j)=1(2v3-3)=v3-2.

9. f(z,y,2) = ze®
(a) Vf(d?,y,Z) = <f®(x?y7z):fy(x?y7z):fz(x:yaz)> = <62y232x262y2:2my62yz>
(b) V£(3,0,2) = (1,12,0)

(c) By Equation 14, Dy f(3,0,2) = Vf(3,0,2) - u = (1,12,0) - (3, -2 1) = +0=-22

3

win

wl

193

" f(z,y)=1+22y = Vf(a:,y):<2\/§,2x-%y_l/2> <2\/_ a:/\/_> Vf(3,4) = (4, 2), and a unit vector in

1 4 -2) 50 Du f(3,4) = Vf(3,4) -u=(4,2)- (4 -2) =

e A

13. g(p,q) =p* —p°¢® = Vglp,q) = (4p° — 2p¢®) i+ (—3p°¢®) j, Vg(2,1) = 28i — 12], and a unit

the direction of v is u =

vector in the direction of vis u =

m( i+3j) = \/ll_o(i—l—?,j), S0

Dug(2,1) = Vg(2,1) - u=(28i - 12j) - (i +3]) = = (28— 36) = ——E or 240,

15. f(x,y,2) = xe” +ye® + ze* = Vf(x,y,z) = (e + ze*, xe¥ + e*,ye* + %), Vf(0,0,0) = (1,1, 1), and a unit

vector in the direction of v is u = W (5,1,-2) = —=—= (5, 1,-2), s
Dy £(0,0,0) = V£(0,0,0) -u=(1,1,1) - ﬁ (5,1, —2) = J%
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17.

19.

21,

23.

25.

27.

29

g(z,y,2) = (z+ 2y + 32)3/2 =

Vy(z,y,z) = <%(aj + 2y + 32)12(1), S(z+2y+ 32)1/2(2), S(x+2y+ 32)1/2(3)>

=(3Vz+2y+32,3Vx + 2y + 32, 5Vx + 2y + 32 ), Vg(1,1,2) = (2,9, 3),

. . . . o s . _ 2 s 1
and a unit vector in the direction of v =2j — kisu = =i- = k, so

Dagl 12 = (30.5) (0.5 -%) = % - =15

fla,y) =y = Vf(x,y)=< (zy) (), %(wy)_l/2(w)>=< >,80Vf(278)=<1=i

Y x
2V/xy 2v/xy
' i irecti PQ i 3 _4
The unit vector in the direction of PQ = (5 — 2,4 —8) = (3, —4) isu = <37 75>’ o

fla,y) =v/r=y’a" = Vf(y) = (—y’z7>2ya" ") = (—y%/a*, 2y/x).

Vf(2,4) = (—4,4), or equivalently (—1, 1), is the direction of maximum rate of change, and the maximum rate
is [Vf(2,4)] = V16 + 16 = 4/2.

f(z,y) =sin(zy) = Vf(z,y) = (ycos(zy),xcos(zy)), Vf(1,0) = (0, 1). Thus the maximum rate of change is
|V f(1,0)| = 1 in the direction (0, 1).

flz,y,2) =22+ 92+ 22 =

Vi(z,y,z2) = <%x R 22220 La? 4?4 22) Y2 2y L(a? 4y 22) Y2 2z>

Yy z
< 242422 a2 22 2 2 +22>

Vf(3,6,-2) = (2, & —> = (2,8,—2). Thus the maximum rate of change is

IV£(3,6,-2)| = (%)2 +(9)*+(-2) = \/% — 1 in the direction (£, £, —2) or equivalently (3,6, —2).

(2) As in the proof of Theorem 15, Dy f = |V f| cos . Since the minimum value of cos 6 is —1 occurring when 6 = T, the
minimum value of Dy, f is — |V f| occurring when € = 7, that is when u is in the opposite direction of V f
(assuming V f # 0).

®) f(z,y) =2y —2*y® = Vf(z,y) = (42’y — 2zy®, " — 32°y?), so f decreases fastest at the point (2, —3) in the
direction —V f(2, —=3) = — (12, -92) = (—12,92).

The direction of fastest change is V f(z,y) = (2z — 2)i+ (2y — 4) j, so we need to find all points (z, y) where V f(x, y) is

paralleltoi+j < (2z—2)i+(2y—4)j=k(i+j) < k=2r—2andk=2y—4.Then2z —-2=2y—4 =

y = x + 1, so the direction of fastest change is i + j at all points on the line y = x + 1.



SECTION 15.6 DIRECTIONAL DERIVATIVES AND THE GRADIENT VECTOR ET SECTION 146 [ 195

31. T:AandmO: T(1,2,2) = Esol-c_360
/$2 +y2+22
<17_171>
ajju=———,
(a) 73
_ _ 2 2 2\ —3/2 _ 40 1 _ 40
D.T(1,2,2) = VT(1,2,2)-u= [—360@ + 1y +2%) (z,y, @le).u_ —5(1,2,2)- 25(1,-1,1) = -5

(b) From (a), VT = —360 (x2 + 1y +2%) —3/2 (z,y, z), and since (x, y, z) is the position vector of the point (x, y, z), the

vector — {(x, y, z), and thus VT, always points toward the origin.

3. VV(z,y,2) = (10x — 3y + yz,xz — 3z, zy), VV(3,4,5) = (38,6, 12)

(a) DuV(3,4,5) = (38,6,12) - = (1,1,-1) =

32
V3 V3
(b) VV(3,4,5) = (38,6, 12), or equivalently, (19, 3, 6).

(c) |[VV(3,4,5)] = v/382 + 62 + 122 = /1624 = 2/406
— —
35. A unit vector in the direction of AB is i and a unit vector in the direction of AC'is j. Thus DA—B> f(1,3) = f2(1,3) =3 and
D F(1,3) = f,(1,3) = 26. Therefore Vf(1,3) = (fz(1,3), f,(1,3)) = (3,26), and by definition,
DE f(1,3) = Vf - u where u is a unit vector in the direction of AD which is <13, 13> Therefore,

D f(1,3)=(3,26) - (5, 13) =355 + 26 13 = 5.

37 (a)v(au+bv):<8(au+bv)78(au+bv)>:<a@+b%,a@+b@>:a<a_u @>+b<@,@>

Ox Oy Ox oz’ Oy Oy ox’ Oy ox’ Oy
=aVu+bVv
ov  Ou ov ou Ou ov Ov
(b) V(uv) = <U—+ua— va——i— 8y> <% a—>+u<%,a—y>—vVu+qu
ou Ov <8u ou v v
V— — U — —, =
dy y ox’ 8y oz’ Oy vVu—uVv
(C)V < 02 > V2 = V2

(9( ) a(un) nfl% nfl% _ n—1
(d) Vu™ < oz oy ={nu ax,nu 3y =nu Vu

39. Let F(z,y,2) = 2(x — 2)* + (y — 1)® + (2 — 3)%. Then 2(z — 2)®> + (y — 1) + (2 — 3)® = 10 is a level surface of F.
Fe(z,y,2z) =4(x —2) = F:(3,3,5) =4, Fy(z,y,2) =2(y—1) = Fy(3,3,5) =4,and
F.(z,y,2)=2(z—3) = F.(3,3,5)=4.

(a) Equation 19 gives an equation of the tangent plane at (3,3,5) as4(x — 3) +4(y —3) +4(z —5) =0 <
4x 4+ 4y 4+ 4z = 44 or equivalently x + y + z = 11.

(b) By Equation 20, the normal line has symmetric equations z Z 3 _Y ; 3_z ; > or equivalently

x —3 =y — 3 =z — 5. Corresponding parametric equationsare t =3+ ¢,y =3+, 2 =5+ L.
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Let F(z,y,2) = 2® — 2y® + 2% + yz. Then 2 — 2y* 4 2% + yz = 2 is a level surface of F'

and VF(z,y, z) = (2z, —4y + 2,2z + y).

(a) VF(2,1,—1) = (4,—5, —1) is a normal vector for the tangent plane at (2, 1, —1), so an equation of the tangent plane
isd(x —2)—5(y—1)—1(z+1)=0o0rde — 5y — z = 4.

(b) The normal line has direction (4, —5, —1), so parametric equations are v = 24+ 4¢, y =1 —5¢, z = —1 — t, and

. . r—2 y—1 z+41
symmetric equations are 1 = 5 = R

F(z,y,z) = —z+zeYcosz = VF(z,y,z)=(eYcosz,xe’cosz,—1 —xeYsinz) and VF(1,0,0) = (1,1, —1).
@l(z—1)+1y—0)—1(z—0)=00rz+y—2=1

br—1=y=—=¢

F(z,y,2) =zy+yz+ 2z, VF(x,y,2) = (y+ z,x + 2,y + z), VF(1,1,1) = (2,2, 2), so an equation of the tangent
plane is 2x + 2y + 2z = 6 or x + y + z = 3, and the normal line is givenbyx —1 =y — 1 =z — 1l orx = y = 2. To graph

the surface we solve for z: z = 53— iy
r+y
fla,y) =y = V(zy)=(y,2),Vf(3,2) = (2,3). Vf(3,2) ’
is perpendicular to the tangent line, so the tangent line has equation \
Vf3,2)- (z—3,y—2)=0 = (2,3)-(z—3,2—2)=0 =
2x + 3y =12
2(x —3)+3(y —2) =0o0r2z+ 3y = 12.
0 X

o 2x0 2y0 220 h . fth 1 .

VF(xo0,Y0,20) = 22 ) Thus an equation of the tangent plane at (o, yo, z0) is

% 2y0 220 :2<$_§+y_§
a

2
T+ ==y+ —= 2 2 + z—g> = 2(1) = 2 since (zo, Yo, 20) is a point on the ellipsoid. Hence

x z . .
D+ L y+ —g z = 1 is an equation of the tangent plane.
a c



51.

53.

55.

57.

59.
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220 2o —1 220 2 1 22 292
V F(zo0,y0,20) = <%, %, ?> s0 an equation of the tangent plane is aix—ﬁ— l;yzo A= % + % — %0
or — 220 T+ @ -z +2 at_% + y_g _x But 2 _ T —|— Z-, so the equation can be written as
a2 2 YT a2 b2 ¢’ c b2’ q

21:0 +2ﬂ _z—i—zo.

a2 b2 c

The hyperboloid 2 — 3? — 2% = 1 is a level surface of F(z,vy,2) = 2*> —y* — 2% and VF (z,y, 2) = (2x, -2y, —22) is a
normal vector to the surface and hence a normal vector for the tangent plane at (x, y, z). The tangent plane is parallel to the
plane z = x + y or x + y — z = 0 if and only if the corresponding normal vectors are parallel, so we need a point (xo, Yo, 20)
on the hyperboloid where (220, —2y0, —220) = ¢ (1,1, —1) or equivalently (xo, —yo, —20) = k (1,1, —1) for some k # 0.
Then we must have xo = k, yo = —k, 20 = k and substituting into the equation of the hyperboloid gives

k* —(~k)*> —k® =1 < —k? =1, an impossibility. Thus there is no such point on the hyperboloid.

Let (o, Yo, 20) be a point on the cone [other than (0, 0, 0)]. Then an equation of the tangent plane to the cone at this point is
2xox + 2yoy — 2202 = 2(3&0 = zo) But 3 + y2 = 23 so the tangent plane is given by oz + Yoy — 202 = 0, a plane

which always contains the origin.

Let (x0, Yo, z0) be a point on the surface. Then an equation of the tangent plane at the point is

z Y Z__ V%ot \/ + V7
+ + . But v/zo + /0 + vVzo = Ve, so the equation is
2 Vo 2 Yo 2 V Z

= +/c. The -, y-, and z-intercepts are v/ czo, v/ cyo and v/ czo respectively. (The x-intercept is found

=t

by setting y = z = 0 and solving the resulting equation for x, and the y- and z-intercepts are found similarly.) So the sum of

the intercepts is \/E<\/ To + /Yo + V20 ) = ¢, a constant.

If f(z,y,2) = 2 — 2> — y? and g(x,y, 2) = 4a* + 3> + 22, then the tangent line is perpendicular to both V f and Vg
at (—1,1,2). The vector v = V f x Vg will therefore be parallel to the tangent line.

We have Vf(x,y,z) = (—2z,—2y,1) = Vf(-1,1,2) =(2,-2,1),and Vy(z,y, z) = (8z,2y,2z) =

i j k
Vg(—1,1,2) = (—8,2,4). Hence v =Vf x Vg=| 2 —2 1|=—10i—16j— 12k.
-8 2 4

Parametric equations are: x = —1 — 10¢, y = 1 — 16t, z =2 — 12¢.
(a) The direction of the normal line of F is given by V F, and that of G by VG. Assuming that
VF # 0 # VG, the two normal lines are perpendicular at P if VF - VG =0at P <
(0F )0z, 0F /0y, 0F/0z) - (0G/0x,0G/0y,0G/0z) =0at P & F,Gy,+ F,G,+ F.G;=0atP.

(b)Here F = 2®> + 4?2 — 22 and G = 22 + y® + 2% — r?, so0
F-VG = (2x,2y, —22) - (2x,2y, 22) = 4x® + 4y — 42% = 4F = 0, since the point (z, y, z) lies on the graph of
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F = 0. To see that this is true without using calculus, note that G = 0 is the equation of a sphere centered at the origin and
F' = 0 is the equation of a right circular cone with vertex at the origin (which is generated by lines through the origin).
At any point of intersection, the sphere’s normal line (which passes through the origin) lies on the cone, and thus is

perpendicular to the cone’s normal line. So the surfaces with equations F' = 0 and G = 0 are everywhere orthogonal.

Let u = (a,b) and v = (¢, d). Then we know that at the given point, Dy, f = Vf-u = af. + bf, and
D, f=Vf.-v=cf, + df,. But these are just two linear equations in the two unknowns f, and f,, and since u and v

are not parallel, we can solve the equations to find V f = (f5, f,) at the given point. In fact,

Vf— dDuwf—bDyvf aDy f—cDyf
- ad — be ’ ad — be ’

15.7 Maximum and Minimum Values ET 14.7

1.

fry) =920 +4y—2* —4y* = fo=-2-2x2 f, =48y,

(a) First we compute D(1,1) = fur(1,1) fiyy (1, 1) — [fay (1, 1)) = (4)(2) — (1)® = 7. Since D(1,1) > 0 and
fax(1,1) > 0, f has a local minimum at (1, 1) by the Second Derivatives Test.

(1) D(1,1) = fuu(1,1) fuyy(1,1) — [fay(1,1)]* = (4)(2) — (3)® = —1. Since D(1,1) < 0, f has a saddle point at (1, 1)

by the Second Derivatives Test.

. In the figure, a point at approximately (1, 1) is enclosed by level curves which are oval in shape and indicate that as we move

away from the point in any direction the values of f are increasing. Hence we would expect a local minimum at or near (1, 1).
The level curves near (0, 0) resemble hyperbolas, and as we move away from the origin, the values of f increase in some
directions and decrease in others, so we would expect to find a saddle point there.

To verify our predictions, we have f(z,y) =4 +2° + vy —3zy = fo(x,y) = 32% — 3y, fy(2,y) = 3y* — 3. We
have critical points where these partial derivatives are equal to 0: 322 — 3y = 0, 3y? — 3z = 0. Substituting y = =2 from the
first equation into the second equation gives 3(z*)> —~3z =0 = 3x(z® —1)=0 = = 0orx = 1. Then we have
two critical points, (0, 0) and (1, 1). The second partial derivatives are fr.(x,y) = 6z, foy(x,y) = —3, and fy,(z,y) = 6y,
50 D(2,y) = fou(2,y) fyu(@,y) = [foy(2,)]* = (62)(6y) — (—3)* = 362y — 9. Then D(0,0) = 36(0)(0) — 9 = —9,
and D(1,1) = 36(1)(1) — 9 = 27. Since D(0,0) < 0, f has a saddle point at (0, 0) by the Second Derivatives Test. Since
D(1,1) > 0and fz,(1,1) > 0, f has a local minimum at (1, 1).

f;vz = _29 f:cy - 07 fyy = —8. Then fw =0and fy = Olmply
2 = —1andy = %, and the only critical pointis (—1, 3).

D(,Y) = foefyy — (foy)® = (—2)(—8) — 0% = 16, and since

D(-1,3) =16 > 0and fux(—1,3) = -2<0, f(-1,3) = 1lisa

local maximum by the Second Derivatives Test.



