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37. The area of the rectangle is = , and is an estimate of the area of paint in the stripe. Here = + ,

so with = = 3+3
12

= 1
2
, = (100) 1

2
+ (200) 1

2
= 150 ft2. Thus there are approximately 150 ft2 of paint

in the stripe.

39. First we nd
1
implicitly by taking partial derivatives of both sides with respect to 1:

1

1
=

[(1 1) + (1 2) + (1 3)]

1

2

1
= 2

1
1
=

2

2
1

. Then by symmetry,

2
=

2

2
2

,
3
=

2

2
3

. When 1 = 25, 2 = 40 and 3 = 50,
1
=
17

200
= 200

17
.

Since the possible error for each is 0 5%, the maximum error of is attained by setting = 0 005 . So

=
1

1 +
2

2 +
3

3 = (0 005)
2 1

1
+

1

2
+

1

3
= (0 005) = 1

17
0 059 .

41. The errors in measurement are at most 2%, so 0 02 and 0 02. The relative error in the calculated surface

area is

=
0 1091(0 425 0 425 1) 0 725 + 0 1091 0 425(0 725 0 725 1)

0 1091 0 425 0 725
= 0 425 + 0 725

To estimate the maximum relative error, we use = = 0 02 and = = 0 02

= 0 425 (0 02) + 0 725 (0 02) = 0 023. Thus the maximum percentage error is approximately 2 3%.

43. = ( + + ) ( ) = ( + )2 + ( + )2 ( 2 + 2)

= 2 + 2 + ( )2 + 2 + 2 + ( )2 2 2 = 2 + ( )2 + 2 + ( )2

But ( ) = 2 and ( ) = 2 and so = ( ) + ( ) + + , which is De nition 7

with 1 = and 2 = . Hence is differentiable.

45. To show that is continuous at ( ) we need to show that lim
( ) ( )

( ) = ( ) or

equivalently lim
( ) (0 0)

( + + ) = ( ). Since is differentiable at ( ),

( + + ) ( ) = = ( ) + ( ) + 1 + 2 , where 1 and 2 0 as

( ) (0 0). Thus ( + + ) = ( ) + ( ) + ( ) + 1 + 2 . Taking the limit of

both sides as ( ) (0 0) gives lim
( ) (0 0)

( + + ) = ( ). Thus is continuous at ( ).

15.5 The Chain Rule ET 14.5

1. = 2 + 2 + , = sin , = = + = (2 + ) cos + (2 + )

3. = 1 + 2 + 2, = ln , = cos

= + = 1
2
(1+ 2+ 2) 1 2(2 ) · 1 + 1

2
(1+ 2+ 2) 1 2(2 )( sin ) =

1

1 + 2 + 2
sin
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5. = , = 2, = 1 , = 1 + 2

= + + = · 2 + 1 · ( 1) +
2
· 2 = 2

2
2

7. = 2 3, = cos , = sin

= + = 2 3 cos + 3 2 2 sin

= + = (2 3)( sin ) + (3 2 2)( cos ) = 2 3 sin + 3 2 2 cos

9. = sin cos , = 2, = 2

= + = (cos cos )( 2) + ( sin sin )(2 ) = 2 cos cos 2 sin sin

= + = (cos cos )(2 ) + ( sin sin )( 2) = 2 cos cos 2 sin sin

11. = cos , = , = 2 + 2

= + = cos · + ( sin ) · 12 ( 2 + 2) 1 2(2 ) = cos sin ·
2 + 2

= cos
2 + 2

sin

= + = cos · + ( sin ) · 1
2
( 2 + 2) 1 2(2 ) = cos sin ·

2 + 2

= cos
2 + 2

sin

13. When = 3, = (3) = 2 and = (3) = 7. By the Chain Rule (2),

= + = (2 7) 0(3) + (2 7) 0(3) = (6)(5) + ( 8)( 4) = 62.

15. ( ) = ( ( ) ( )) where = + sin , = + cos

= , = cos , = , = sin . By the Chain Rule (3), = + . Then

(0 0) = ( (0 0) (0 0)) (0 0) + ( (0 0) (0 0)) (0 0) = (1 2)( 0) + (1 2)( 0) = 2(1) + 5(1) = 7.

Similarly, = + . Then

(0 0) = ( (0 0) (0 0)) (0 0) + ( (0 0) (0 0)) (0 0) = (1 2)(cos 0) + (1 2)( sin 0)

= 2(1) + 5(0) = 2

17. = ( ), = ( ), = ( )

= + , = + , = +
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19. = ( ), = ( ), = ( ), = ( )

= + + , = + +

21. = 2 + 3, = 2 + 3, = +

= + = (2 + 3)( 2) + (3 2)(1),

= + = (2 + 3)(2 ) + (3 2)( ),

= + = (2 + 3)(3 2) + (3 2)( ).

When = 2, = 1, and = 0, we have = 2, = 3,

so = (31)(1) + (54)(1) = 85, = (31) (4) + (54)(1) = 178, = (31)(0) + (54)(1) = 54.

23. = ln( 2 + 2 + 2), = + 2 , = 2 , = 2

= + + =
2

2 + 2 + 2
(1) +

2
2 + 2 + 2

(2) +
2

2 + 2 + 2
(2 )

=
2 + 4 + 4
2 + 2 + 2

,

= + + =
2

2 + 2 + 2
(2) +

2
2 + 2 + 2

( 1) +
2

2 + 2 + 2
(2 )

=
4 2 + 4
2 + 2 + 2

.

When = = 1 we have = 3, = 1, and = 2, so =
9

7
and =

9

7
.

25. = 2 + , = cos , = sin , = +

= + + = (2 )( cos ) + ( )( sin ) + ( )(1) = 2 cos + sin + ,

= + + = (2 )( cos ) + ( )( sin ) + ( )(1) = 2 cos + sin + ,

= + + = (2 )( sin ) + ( )( cos ) + ( )(0) = 2 sin + cos .

When = 2, = 3, and = 0 we have = 6, = 0, and = 5, so = 36, = 24, and = 30.

27. = 1+ 2 , so let ( ) = ( )1 2 1 2 = 0. Then by Equation 6

= =
1
2
( ) 1 2( ) 2
1
2
( ) 1 2( ) 2

=
4

2 2
=
4( )3 2

2 2
.

29. cos( ) = , so let ( ) = cos( ) = 0.

Then = =
sin( )

sin( )( 1)
=
sin( ) +

sin( )
.
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31. 2 + 2 + 2 = 3 , so let ( ) = 2 + 2 + 2 3 = 0. Then by Equations 7

= =
2 3

2 3
=
3 2

2 3
and = =

2 3

2 3
=
3 2

2 3
.

33. = arctan( ), so let ( ) = arctan( ) = 0. Then

= =
1

1
1

1 + ( )2
( )

=
1 + 2 2

1 + + 2 2

= =

1

1 + ( )2
( )

1
1

1 + ( )2
( )

=
1 + 2 2

1 + 2 2 +

1 + 2 2

=
1 + + 2 2

35. Since and are each functions of , ( ) is a function of , so by the Chain Rule, = + . After

3 seconds, = 1 + = 1 + 3 = 2, = 2 + 1
3
= 2 + 1

3
(3) = 3, =

1

2 1 +
=

1

2 1 + 3
=
1

4
, and =

1

3
.

Then = (2 3) + (2 3) = 4 1
4
+ 3 1

3
= 2. Thus the temperature is rising at a rate of 2 C s.

37. = 1449 2 + 4 6 0 055 2 + 0 00029 3 + 0 016 , so = 4 6 0 11 + 0 00087 2 and = 0 016.

According to the graph, the diver is experiencing a temperature of approximately 12 5 C at = 20 minutes, so

= 4 6 0 11(12 5) + 0 00087(12 5)2 3 36. By sketching tangent lines at = 20 to the graphs given, we estimate

1

2
and 1

10
. Then, by the Chain Rule, = + (3 36) 1

10
+ (0 016) 1

2
0 33.

Thus the speed of sound experienced by the diver is decreasing at a rate of approximately 0 33 m s per minute.

39. (a) = , so by the Chain Rule,

= + + = + + = 2 · 2 · 2 + 1 · 2 · 2 + 1 · 2 · ( 3) = 6 m3 s.

(b) = 2( + + ), so by the Chain Rule,

= + + = 2( + ) + 2( + ) + 2( + )

= 2(2 + 2)2 + 2(1 + 2)2 + 2(1 + 2)( 3) = 10 m2 s

(c) 2 = 2 + 2 + 2 2 = 2 + 2 + 2 = 2(1)(2) + 2(2)(2) + 2(2)( 3) = 0

= 0 m s.

41. = 0 05, = 0 15, = 8 31 and =
8 31

8 31
2

. Thus when = 20 and = 320,

= 8 31
0 15

20

(0 05)(320)

400
0 27 L s.

43. Let be the length of the rst side of the triangle and the length of the second side. The area of the triangle is given by

= 1
2

sin where is the angle between the two sides. Thus is a function of , , and , and , , and are each in
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turn functions of time . We are given that = 3, = 2, and because is constant, = 0. By the Chain Rule,

= + + = 1
2
sin · + 1

2
sin · + 1

2
cos · . When = 20, = 30,

and = 6 we have

0 = 1
2 (30) sin 6

(3) + 1
2 (20) sin 6

( 2) + 1
2 (20)(30) cos 6

= 45 · 1
2

20 · 1
2
+ 300 · 3

2
· = 25

2
+ 150 3

Solving for gives =
25 2

150 3
=

1

12 3
, so the angle between the sides is decreasing at a rate of

1 12 3 0 048 rad s.

45. (a) By the Chain Rule, = cos + sin , = ( sin ) + cos .

(b)
2

=
2

cos2 + 2 cos sin +
2

sin2 ,

2

=
2

2 sin2 2 2 cos sin +
2

2 cos2 . Thus

2

+
1
2

2

=
2

+
2

(cos2 + sin2 ) =
2

+
2

.

47. Let = . Then = = and = ( 1). Thus + = 0.

49. Let = + , = . Then = ( ) + ( ), so = 0( ) and = 0( ).

Thus = + = 0( ) 0( ) and

2

2
= [ 0( ) 0( )] =

0( ) 0( )
= 2 00( ) + 2 00( ).

Similarly = 0( ) + 0( ) and
2

2
= 00( ) + 00( ). Thus

2

2
= 2

2

2
.

51. = 2 + 2 . Then

2

= 2 + 2

=
2

2
2 + 2 + 2 +

2

2
2 + 2 + 2

= 4
2

2
+

2

4 2 + 0 + 4
2

2
+

2

4 2 + 2

By the continuity of the partials,
2

= 4
2

2
+ 4

2

2
+ (4 2 + 4 2)

2

+ 2 .
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53. = cos + sin and = sin + cos . Then

2

2
= cos

2

2
cos +

2

sin + sin
2

2
sin +

2

cos

= cos2
2

2
+ 2 cos sin

2

+ sin2
2

2

and
2

2 = cos + ( sin )
2

2
( sin ) +

2

cos

sin + cos
2

2
cos +

2

( sin )

= cos sin + 2 sin2
2

2
2 2 cos sin

2

+ 2 cos2
2

2

Thus
2

2
+
1
2

2

2 +
1

= (cos2 + sin2 )
2

2
+ sin2 + cos2

2

2

1
cos

1
sin +

1
cos + sin

=
2

2
+

2

2
as desired.

55. (a) Since is a polynomial, it has continuous second-order partial derivatives, and

( ) = ( )2( ) + 2( )( )2 + 5( )3 = 3 2 + 2 3 2 + 5 3 3 = 3( 2 + 2 2 + 5 3) = 3 ( ).

Thus, is homogeneous of degree 3.

(b) Differentiating both sides of ( ) = ( ) with respect to using the Chain Rule, we get

( ) = [ ( )]

( )
( ) · ( )

+
( )

( ) · ( )
=

( )
( ) +

( )
( ) = 1 ( ).

Setting = 1: ( ) + ( ) = ( ).

57. Differentiating both sides of ( ) = ( ) with respect to using the Chain Rule, we get

( ) = [ ( )]

( )
( ) · ( )

+
( )

( ) · ( )
= ( ) ( ) = ( ).

Thus ( ) = 1 ( ).

15.6 Directional Derivatives and the Gradient Vector ET 14.6

1. We can approximate the directional derivative of the pressure function at K in the direction of S by the average rate of change
of pressure between the points where the red line intersects the contour lines closest to K (extend the red line slightly at the

left). In the direction of S, the pressure changes from 1000 millibars to 996 millibars and we estimate the distance between

these two points to be approximately 50 km (using the fact that the distance from K to S is 300 km). Then the rate of change of

pressure in the direction given is approximately 996 1000
50

= 0 08 millibar km.
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3. u ( 20 30) = ( 20 30) · u = ( 20 30) 1

2
+ ( 20 30) 1

2
.

( 20 30) = lim
0

( 20 + 30) ( 20 30) , so we can approximate ( 20 30) by considering = ±5 and

using the values given in the table: ( 20 30)
( 15 30) ( 20 30)

5
=

26 ( 33)

5
= 1 4,

( 20 30)
( 25 30) ( 20 30)

5
=

39 ( 33)

5
= 1 2. Averaging these values gives ( 20 30) 1 3.

Similarly, ( 20 30) = lim
0

( 20 30 + ) ( 20 30) , so we can approximate ( 20 30) with = ±10:

( 20 30)
( 20 40) ( 20 30)

10
=

34 ( 33)

10
= 0 1,

( 20 30)
( 20 20) ( 20 30)

10
=

30 ( 33)

10
= 0 3. Averaging these values gives ( 20 30) 0 2.

Then u ( 20 30) 1 3 1

2
+ ( 0 2) 1

2
0 778.

5. ( ) = ( ) = and ( ) = . If u is a unit vector in the direction of = 2 3, then

from Equation 6, u (0 4) = (0 4) cos 2
3
+ (0 4) sin 2

3
= 4 · 1

2
+ 1 · 3

2 = 2+ 3
2 .

7. ( ) = sin(2 + 3 )

(a) ( ) = i+ j = [cos(2 + 3 ) · 2] i+ [cos(2 + 3 ) · 3] j = 2 cos (2 + 3 ) i+ 3 cos (2 + 3 ) j

(b) ( 6 4) = (2 cos 0)i+ (3 cos 0)j = 2 i+ 3 j

(c) By Equation 9, u ( 6 4) = ( 6 4) · u = (2 i+ 3 j) · 1
2

3 i j = 1
2
2 3 3 = 3 3

2
.

9. ( ) = 2

(a) ( ) = h ( ) ( ) ( )i = 2 2 2 2 2

(b) (3 0 2) = h1 12 0i

(c) By Equation 14, u (3 0 2) = (3 0 2) · u = h1 12 0i · 2
3

2
3

1
3
= 2

3
24
3
+ 0 = 22

3
.

11. ( ) = 1 + 2 ( ) = 2 2 · 1
2

1 2 = 2 , (3 4) = 4 3
2
, and a unit vector in

the direction of v is u = 1

42 + ( 3)2
h4 3i = 4

5
3
5
, so u (3 4) = (3 4) · u = 4 3

2
· 4

5
3
5
= 23

10 .

13. ( ) = 4 2 3 ( ) = 4 3 2 3 i+ 3 2 2 j, (2 1) = 28 i 12 j, and a unit

vector in the direction of v is u = 1

12+32
(i + 3 j) = 1

10
(i + 3 j), so

u (2 1) = (2 1) · u = (28 i 12 j) · 1

10
(i+ 3 j) = 1

10
(28 36) = 8

10
or 4 10

5
.

15. ( ) = + + ( ) = h + + + i, (0 0 0) = h1 1 1i, and a unit
vector in the direction of v is u = 1

25+1+4
h5 1 2i = 1

30
h5 1 2i, so

u (0 0 0) = (0 0 0) · u = h1 1 1i · 1

30
h5 1 2i = 4

30
.
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17. ( ) = ( + 2 + 3 )3 2

( ) = 3
2
( + 2 + 3 )1 2(1) 3

2
( + 2 + 3 )1 2(2) 3

2
( + 2 + 3 )1 2(3)

= 3
2

+ 2 + 3 3 + 2 + 3 9
2

+ 2 + 3 , (1 1 2) = 9
2
9 27

2
,

and a unit vector in the direction of v = 2 j k is u = 2

5
j 1

5
k, so

u (1 1 2) = 9
2 9

27
2
· 0 2

5

1

5
= 18

5

27

2 5
= 9

2 5
.

19. ( ) = ( ) = 1
2
( ) 1 2( ) 1

2
( ) 1 2( ) =

2 2
, so (2 8) = 1 1

4
.

The unit vector in the direction of = h5 2 4 8i = h3 4i is u = 3
5

4
5
, so

u (2 8) = (2 8) · u = 1 1
4
· 3

5
4
5
= 2

5
.

21. ( ) = 2 = 2 1 ( ) = 2 2 2 1 = 2 2 2 .

(2 4) = h 4 4i, or equivalently h 1 1i, is the direction of maximum rate of change, and the maximum rate
is | (2 4)| = 16 + 16 = 4 2.

23. ( ) = sin( ) ( ) = h cos( ) cos( )i, (1 0) = h0 1i. Thus the maximum rate of change is
| (1 0)| = 1 in the direction h0 1i.

25. ( ) = 2 + 2 + 2

( ) = 1
2
( 2 + 2 + 2) 1 2 · 2 1

2
( 2 + 2 + 2) 1 2 · 2 1

2
( 2 + 2 + 2) 1 2 · 2

=
2 + 2 + 2 2 + 2 + 2 2 + 2 + 2

(3 6 2) = 3

49

6

49

2

49
= 3

7
6
7

2
7
. Thus the maximum rate of change is

| (3 6 2)| = 3
7

2
+ 6

7

2
+ 2

7

2
= 9+ 36+ 4

49
= 1 in the direction 3

7
6
7

2
7
or equivalently h3 6 2i.

27. (a) As in the proof of Theorem 15, u = | | cos . Since the minimum value of cos is 1 occurring when = , the

minimum value of u is | | occurring when = , that is when u is in the opposite direction of

(assuming 6= 0).

(b) ( ) = 4 2 3 ( ) = 4 3 2 3 4 3 2 2 , so decreases fastest at the point (2 3) in the

direction (2 3) = h12 92i = h 12 92i.

29. The direction of fastest change is ( ) = (2 2) i+ (2 4) j, so we need to nd all points ( ) where ( ) is

parallel to i+ j (2 2) i+ (2 4) j = (i+ j) = 2 2 and = 2 4. Then 2 2 = 2 4

= + 1 so the direction of fastest change is i+ j at all points on the line = + 1.
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31. =
2 + 2 + 2

and 120 = (1 2 2) =
3
so = 360.

(a) u = h1 1 1i
3

,

u (1 2 2) = (1 2 2) ·u = 360 2 + 2 + 2 3 2h i
(1 2 2)

·u = 40
3
h1 2 2i · 1

3
h1 1 1i = 40

3 3

(b) From (a), = 360 2 + 2 + 2 3 2h i, and since h i is the position vector of the point ( ), the

vector h i, and thus , always points toward the origin.

33. ( ) = h10 3 + 3 i, (3 4 5) = h38 6 12i
(a) u (3 4 5) = h38 6 12i · 1

3
h1 1 1i = 32

3

(b) (3 4 5) = h38 6 12i, or equivalently, h19 3 6i.

(c) | (3 4 5)| = 382 + 62 + 122 = 1624 = 2 406

35. A unit vector in the direction of is i and a unit vector in the direction of is j. Thus (1 3) = (1 3) = 3 and

(1 3) = (1 3) = 26. Therefore (1 3) = h (1 3) (1 3)i = h3 26i, and by de nition,

(1 3) = · u where u is a unit vector in the direction of , which is 5
13

12
13
. Therefore,

(1 3) = h3 26i · 5
13

12
13

= 3 · 5
13
+ 26 · 12

13
= 327

13
.

37. (a) ( + ) =
( + ) ( + )

= + + = +

= +

(b) ( ) = + + = + = +

(c) =
2 2

=
2

=
2

(d) =
( ) ( )

= 1 1 = 1

39. Let ( ) = 2( 2)2 + ( 1)2 + ( 3)2. Then 2( 2)2 + ( 1)2 + ( 3)2 = 10 is a level surface of .

( ) = 4( 2) (3 3 5) = 4, ( ) = 2( 1) (3 3 5) = 4, and

( ) = 2( 3) (3 3 5) = 4.

(a) Equation 19 gives an equation of the tangent plane at (3 3 5) as 4( 3) + 4( 3) + 4( 5) = 0

4 + 4 + 4 = 44 or equivalently + + = 11.

(b) By Equation 20, the normal line has symmetric equations 3

4
=

3

4
=

5

4
or equivalently

3 = 3 = 5. Corresponding parametric equations are = 3 + , = 3 + , = 5 + .
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41. Let ( ) = 2 2 2 + 2 + . Then 2 2 2 + 2 + = 2 is a level surface of

and ( ) = h2 4 + 2 + i.
(a) (2 1 1) = h4 5 1i is a normal vector for the tangent plane at (2 1 1), so an equation of the tangent plane

is 4( 2) 5( 1) 1( + 1) = 0 or 4 5 = 4.

(b) The normal line has direction h4 5 1i, so parametric equations are = 2 + 4 , = 1 5 , = 1 , and

symmetric equations are 2

4
=

1

5
=

+ 1

1
.

43. ( ) = + cos ( ) = h cos cos 1 sin i and (1 0 0) = h1 1 1i.
(a) 1( 1) + 1( 0) 1( 0) = 0 or + = 1

(b) 1 = =

45. ( ) = + + , ( ) = h + + + i, (1 1 1) = h2 2 2i, so an equation of the tangent
plane is 2 + 2 + 2 = 6 or + + = 3, and the normal line is given by 1 = 1 = 1 or = = . To graph

the surface we solve for : =
3

+
.

47. ( ) = ( ) = h i, (3 2) = h2 3i. (3 2)

is perpendicular to the tangent line, so the tangent line has equation

(3 2) · h 3 2i = 0 h2 3i · h 3 2i = 0
2( 3) + 3( 2) = 0 or 2 + 3 = 12.

49. ( 0 0 0) =
2 0

2

2 0

2

2 0

2
. Thus an equation of the tangent plane at ( 0 0 0) is

2 0

2
+
2 0

2
+
2 0

2
= 2

2
0

2
+

2
0

2
+

2
0

2
= 2(1) = 2 since ( 0 0 0) is a point on the ellipsoid. Hence

0

2
+

0

2
+

0

2
= 1 is an equation of the tangent plane.
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51. ( 0 0 0) =
2 0

2

2 0

2

1 , so an equation of the tangent plane is 2 0

2
+
2 0

2

1
=
2 2

0

2
+
2 2

0

2

0

or 2 0

2
+
2 0

2
= + 2

2
0

2
+

2
0

2

0 . But 0
=

2
0

2
+

2
0

2
, so the equation can be written as

2 0

2
+
2 0

2
=

+ 0 .

53. The hyperboloid 2 2 2 = 1 is a level surface of ( ) = 2 2 2 and ( ) = h2 2 2 i is a
normal vector to the surface and hence a normal vector for the tangent plane at ( ). The tangent plane is parallel to the

plane = + or + = 0 if and only if the corresponding normal vectors are parallel, so we need a point ( 0 0 0)

on the hyperboloid where h2 0 2 0 2 0i = h1 1 1i or equivalently h 0 0 0i = h1 1 1i for some 6= 0.
Then we must have 0 = , 0 = , 0 = and substituting into the equation of the hyperboloid gives

2 ( )2 2 = 1 2 = 1, an impossibility. Thus there is no such point on the hyperboloid.

55. Let ( 0 0 0) be a point on the cone [other than (0 0 0)]. Then an equation of the tangent plane to the cone at this point is

2 0 + 2 0 2 0 = 2 2
0 +

2
0

2
0 . But 2

0 +
2
0 =

2
0 so the tangent plane is given by 0 + 0 0 = 0, a plane

which always contains the origin.

57. Let ( 0 0 0) be a point on the surface. Then an equation of the tangent plane at the point is

2 0

+
2 0

+
2 0

=
0 + 0 + 0

2
. But 0 + 0 + 0 = , so the equation is

0

+
0

+
0

= . The -, -, and -intercepts are 0, 0 and 0 respectively. (The -intercept is found

by setting = = 0 and solving the resulting equation for , and the - and -intercepts are found similarly.) So the sum of

the intercepts is 0 + 0 + 0 = , a constant.

59. If ( ) = 2 2 and ( ) = 4 2 + 2 + 2, then the tangent line is perpendicular to both and

at ( 1 1 2). The vector v = × will therefore be parallel to the tangent line.

We have ( ) = h 2 2 1i ( 1 1 2) = h2 2 1i, and ( ) = h8 2 2 i

( 1 1 2) = h 8 2 4i. Hence v = × =

i j k

2 2 1

8 2 4

= 10 i 16 j 12k.

Parametric equations are: = 1 10 , = 1 16 , = 2 12 .

61. (a) The direction of the normal line of is given by , and that of by . Assuming that

6= 0 6= , the two normal lines are perpendicular at if · = 0 at

h i · h i = 0 at + + = 0 at .

(b) Here = 2 + 2 2 and = 2 + 2 + 2 2, so

· = h2 2 2 i · h2 2 2 i = 4 2 + 4 2 4 2 = 4 = 0, since the point ( ) lies on the graph of
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= 0. To see that this is true without using calculus, note that = 0 is the equation of a sphere centered at the origin and

= 0 is the equation of a right circular cone with vertex at the origin (which is generated by lines through the origin).

At any point of intersection, the sphere’s normal line (which passes through the origin) lies on the cone, and thus is

perpendicular to the cone’s normal line. So the surfaces with equations = 0 and = 0 are everywhere orthogonal.

63. Let u = h i and v = h i. Then we know that at the given point, u = · u = + and

v = · v = + . But these are just two linear equations in the two unknowns and , and since u and v

are not parallel, we can solve the equations to nd = h i at the given point. In fact,

=
u v v u .

15.7 Maximum and Minimum Values ET 14.7

1. (a) First we compute (1 1) = (1 1) (1 1) [ (1 1)]2 = (4)(2) (1)2 = 7. Since (1 1) 0 and

(1 1) 0, has a local minimum at (1 1) by the Second Derivatives Test.

(b) (1 1) = (1 1) (1 1) [ (1 1)]2 = (4)(2) (3)2 = 1. Since (1 1) 0, has a saddle point at (1 1)

by the Second Derivatives Test.

3. In the gure, a point at approximately (1 1) is enclosed by level curves which are oval in shape and indicate that as we move

away from the point in any direction the values of are increasing. Hence we would expect a local minimum at or near (1 1).

The level curves near (0 0) resemble hyperbolas, and as we move away from the origin, the values of increase in some

directions and decrease in others, so we would expect to nd a saddle point there.

To verify our predictions, we have ( ) = 4 + 3 + 3 3 ( ) = 3 2 3 , ( ) = 3 2 3 . We

have critical points where these partial derivatives are equal to 0: 3 2 3 = 0, 3 2 3 = 0. Substituting = 2 from the

rst equation into the second equation gives 3( 2)2 3 = 0 3 ( 3 1) = 0 = 0 or = 1. Then we have

two critical points, (0 0) and (1 1). The second partial derivatives are ( ) = 6 , ( ) = 3, and ( ) = 6 ,

so ( ) = ( ) ( ) [ ( )]2 = (6 )(6 ) ( 3)2 = 36 9. Then (0 0) = 36(0)(0) 9 = 9,

and (1 1) = 36(1)(1) 9 = 27. Since (0 0) 0, has a saddle point at (0 0) by the Second Derivatives Test. Since

(1 1) 0 and (1 1) 0, has a local minimum at (1 1).

5. ( ) = 9 2 + 4 2 4 2 = 2 2 , = 4 8 ,

= 2, = 0, = 8. Then = 0 and = 0 imply

= 1 and = 1
2
, and the only critical point is 1 1

2
.

( ) = ( )2 = ( 2)( 8) 02 = 16, and since

1 1
2
= 16 0 and 1 1

2
= 2 0, 1 1

2
= 11 is a

local maximum by the Second Derivatives Test.


