
15 PARTIAL DERIVATIVES ET 14

15.1 Functions of Several Variables ET 14.1

1. (a) From Table 1, ( 15 40) = 27, which means that if the temperature is 15 C and the wind speed is 40 km h, then the

air would feel equivalent to approximately 27 C without wind.

(b) The question is asking: when the temperature is 20 C, what wind speed gives a wind-chill index of 30 C? From

Table 1, the speed is 20 km h.

(c) The question is asking: when the wind speed is 20 km h, what temperature gives a wind-chill index of 49 C? From

Table 1, the temperature is 35 C.

(d) The function = ( 5 ) means that we x at 5 and allow to vary, resulting in a function of one variable. In

other words, the function gives wind-chill index values for different wind speeds when the temperature is 5 C. From

Table 1 (look at the row corresponding to = 5), the function decreases and appears to approach a constant value as

increases.

(e) The function = ( 50) means that we x at 50 and allow to vary, again giving a function of one variable. In

other words, the function gives wind-chill index values for different temperatures when the wind speed is 50 km h . From

Table 1 (look at the column corresponding to = 50), the function increases almost linearly as increases.

3. If the amounts of labor and capital are both doubled, we replace in the function with 2 2 , giving

(2 2 ) = 1 01(2 )0 75(2 )0 25 = 1 01(20 75)(20 25) 0 75 0 25 = (21)1 01 0 75 0 25 = 2 ( )

Thus, the production is doubled. It is also true for the general case ( ) = 1 :

(2 2 ) = (2 ) (2 )1 = (2 )(21 ) 1 = (2 +1 ) 1 = 2 ( ).

5. (a) According to Table 4, (40 15) = 25, which means that if a 40-knot wind has been blowing in the open sea for 15 hours,

it will create waves with estimated heights of 25 feet.

(b) = (30 ) means we x at 30 and allow to vary, resulting in a function of one variable. Thus here, = (30 )

gives the wave heights produced by 30-knot winds blowing for hours. From the table (look at the row corresponding to

= 30), the function increases but at a declining rate as increases. In fact, the function values appear to be approaching a

limiting value of approximately 19, which suggests that 30-knot winds cannot produce waves higher than about 19 feet.

(c) = ( 30) means we x at 30, again giving a function of one variable. So, = ( 30) gives the wave heights

produced by winds of speed blowing for 30 hours. From the table (look at the column corresponding to = 30), the

function appears to increase at an increasing rate, with no apparent limiting value. This suggests that faster winds (lasting

30 hours) always create higher waves.

7. (a) (2 0) = 22 3(2)(0) = 4(1) = 4

(b) Since both 2 and the exponential function are de ned everywhere, 2 3 is de ned for all choices of values for and .

Thus the domain of is R2.

165

Michael
Highlight



166 ¤ CHAPTER 15 PARTIAL DERIVATIVES ET CHAPTER 14

(c) Because the range of ( ) = 3 is R, and the range of is (0 ), the range of ( ) = 3 is (0 ).

The range of 2 is [0 ), so the range of the product 2 3 is [0 ).

9. (a) (2 1 6) = 6 22 ( 1)2 = 1 = .

(b) 2 2 is de ned when 2 2 0 2 + 2. Thus the domain of is ( ) | 2 + 2 .

(c) Since 2 2 0, we have 2 2
1. Thus the range of is [1 ).

11. + is de ned only when + 0, or . So

the domain of is {( ) | }.
13. ln(9 2 9 2) is de ned only when

9 2 9 2 0, or 1
9

2 + 2 1. So the domain of

is ( ) 1
9

2 + 2 1 , the interior of an ellipse.

15. 1 2 is de ned only when 1 2 0, or 2 1

1 1, and 1 2 is de ned only when

1 2 0, or 2 1 1 1. Thus the

domain of is {( ) | 1 1 1 1}.

17. 2 is de ned only when 2 0, or 2.

In addition, is not de ned if 1 2 = 0

= ±1. Thus the domain of is

( ) | 2 6= ±1 .

19. We need 1 2 2 2 0 or 2 + 2 + 2 1,

so = ( ) | 2 + 2 + 2 1 (the points inside

or on the sphere of radius 1, center the origin).

21. = 3, a horizontal plane through the point (0 0 3).
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23. = 10 4 5 or 4 + 5 + = 10, a plane with

intercepts 2 5, 2, and 10.

25. = 2 + 1, a parabolic cylinder

27. = 4 2 + 2 + 1, an elliptic paraboloid with vertex
at (0 0 1).

29. = 2 + 2 so 2 + 2 = 2 and 0, the top half

of a right circular cone.

31. The point ( 3 3) lies between the level curves with -values 50 and 60. Since the point is a little closer to the level curve with

= 60, we estimate that ( 3 3) 56. The point (3 2) appears to be just about halfway between the level curves with

-values 30 and 40, so we estimate (3 2) 35. The graph rises as we approach the origin, gradually from above, steeply

from below.

33. Near , the level curves are very close together, indicating that the terrain is quite steep. At , the level curves are much

farther apart, so we would expect the terrain to be much less steep than near , perhaps almost at.

35. 37.
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39. The level curves are ( 2 )2 = or = 2 ± ,

0, a family of pairs of parallel lines.

41. The level curves are ln = or = ln + .

43. The level curves are = or = , a family of

exponential curves.

45. The level curves are 2 2 = or 2 2 = 2,

0. When = 0 the level curve is the pair of lines

= ± . For 0, the level curves are hyperbolas with

axis the -axis.

47. The contour map consists of the level curves = 2 + 9 2, a family of
ellipses with major axis the -axis. (Or, if = 0, the origin.)

The graph of ( ) is the surface = 2 + 9 2, an elliptic paraboloid.

If we visualize lifting each ellipse = 2 + 9 2 of the contour map to the plane
= , we have horizontal traces that indicate the shape of the graph of .

49. The isothermals are given by = 100 (1 + 2 + 2 2) or
2 + 2 2 = (100 ) [0 100], a family of ellipses.
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51. ( ) =
2

+ 2 2

53. ( ) = 2 3

The traces parallel to the -plane (such as the left-front trace in the graph above) are parabolas; those parallel to the -plane
(such as the right-front trace) are cubic curves. The surface is called a monkey saddle because a monkey sitting on the surface
near the origin has places for both legs and tail to rest.

55. (a) C (b) II
Reasons: This function is periodic in both and , and the function is the same when is interchanged with , so its graph is
symmetric about the plane = . In addition, the function is 0 along the - and -axes. These conditions are satis ed only by
C and II.

57. (a) F (b) I
Reasons: This function is periodic in both and but is constant along the lines = + , a condition satis ed only by F and
I.

59. (a) B (b) VI
Reasons: This function is 0 along the lines = ±1 and = ±1. The only contour map in which this could occur is VI. Also
note that the trace in the -plane is the parabola = 1 2 and the trace in the -plane is the parabola = 1 2, so the
graph is B.

61. = + 3 + 5 is a family of parallel planes with normal vector h1 3 5i.

63. = 2 2 + 2 are the equations of the level surfaces. For = 0, the surface is a right circular cone with vertex the origin
and axis the -axis. For 0, we have a family of hyperboloids of one sheet with axis the -axis. For 0, we have a
family of hyperboloids of two sheets with axis the -axis.

65. (a) The graph of is the graph of shifted upward 2 units.

(b) The graph of is the graph of stretched vertically by a factor of 2.

(c) The graph of is the graph of re ected about the -plane.

(d) The graph of ( ) = ( ) + 2 is the graph of re ected about the -plane and then shifted upward 2 units.
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67. ( ) = 3 4 4 2 10

Three-dimensional view Front view

It does appear that the function has a maximum value, at the higher of the two “hilltops.” From the front view graph, the

maximum value appears to be approximately 15. Both hilltops could be considered local maximum points, as the values of

there are larger than at the neighboring points. There does not appear to be any local minimum point; although the valley shape

between the two peaks looks like a minimum of some kind, some neighboring points have lower function values.

69. ( ) =
+

2 + 2
. As both and become large, the function values

appear to approach 0, regardless of which direction is considered. As

( ) approaches the origin, the graph exhibits asymptotic behavior.

From some directions, ( ) , while in others ( ) .

(These are the vertical spikes visible in the graph.) If the graph is

examined carefully, however, one can see that ( ) approaches 0

along the line = .

71. ( ) =
2+ 2

. First, if = 0, the graph is the cylindrical surface

=
2

(whose level curves are parallel lines). When 0, the vertical trace

above the -axis remains xed while the sides of the surface in the -direction

“curl” upward, giving the graph a shape resembling an elliptic paraboloid. The

level curves of the surface are ellipses centered at the origin.

= 0

For 0 1, the ellipses have major axis the -axis and the eccentricity increases as 0.

= 0 5 (level curves in increments of 1)
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For = 1 the level curves are circles centered at the origin.

= 1 (level curves in increments of 1)

When 1, the level curves are ellipses with major axis the -axis, and the eccentricity increases as increases.

= 2 (level curves in increments of 4)

For values of 0, the sides of the surface in the -direction curl downward and approach the -plane (while the vertical

trace = 0 remains xed), giving a saddle-shaped appearance to the graph near the point (0 0 1). The level curves consist of

a family of hyperbolas. As decreases, the surface becomes atter in the -direction and the surface’s approach to the curve in

the trace = 0 becomes steeper, as the graphs demonstrate.

= 0 5 (level curves in increments of 0 25)

= 2 (level curves in increments of 0 25)
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73. = 2 + 2 + . When 2, the surface intersects the plane = 6= 0 in a hyperbola. (See graph below.) It intersects
the plane = in the parabola = (2 + ) 2, and the plane = in the parabola = (2 ) 2. These parabolas open in

opposite directions, so the surface is a hyperbolic paraboloid.

When = 2 the surface is = 2 + 2 2 = ( )2. So the surface is constant along each line = . That

is, the surface is a cylinder with axis = 0, = 0. The shape of the cylinder is determined by its intersection with the

plane + = 0, where = 4 2, and hence the cylinder is parabolic with minima of 0 on the line = .

= 5, = 2 = 10 = 2

When 2 0, 0 for all and . If and have the same sign, then

2 + 2 + 2 + 2 2 = ( )2 0. If they have opposite signs, then 0. The intersection with the

surface and the plane = 0 is an ellipse (see graph below). The intersection with the surface and the planes = 0 and

= 0 are parabolas = 2 and = 2 respectively, so the surface is an elliptic paraboloid.

When 0 the graphs have the same shape, but are re ected in the plane = 0, because

2 + 2 + = ( )2 + 2 + ( )( ) . That is, the value of is the same for at ( ) as it is for at ( ).

= 1, = 2 = 0 = 10

So the surface is an elliptic paraboloid for 0 2, a parabolic cylinder for = 2, and a hyperbolic paraboloid for 2.

75. (a) = 1 = = ln = ln

ln = ln + ln

(b) We list the values for ln( ) and ln( ) for the years 1899 –1922. (Historically, these values were rounded to

2 decimal places.)
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39. lim
( ) (0 0)

3 + 3

2 + 2
= lim

0+

( cos )3 + ( sin )3

2
= lim

0+
( cos3 + sin3 ) = 0

41. lim
( ) (0 0)

2 2

1
2 + 2

= lim
0+

2

1
2

= lim
0+

2

( 2 )

2
[using l’Hospital’s Rule]

= lim
0+

2

= 0 = 1

43. ( ) =

sin( ) if ( ) 6= (0 0)

1 if ( ) = (0 0)

From the graph, it appears that is continuous everywhere. We know

is continuous on R2 and sin is continuous everywhere, so

sin( ) is continuous on R2 and sin( ) is continuous on R2

except possibly where = 0. To show that is continuous at those points, consider any point ( ) in R2 where = 0.

Because is continuous, = 0 as ( ) ( ). If we let = , then 0 as ( ) ( ) and

lim
( ) ( )

sin( )
= lim

0

sin( )
= 1 by Equation 3.4.2 [ET 3.3.2]. Thus lim

( ) ( )
( ) = ( ) and is continuous

on R2.

45. Since |x a|2 = |x|2 + |a|2 2 |x| |a| cos |x|2 + |a|2 2 |x| |a| = (|x| |a|)2, we have |x| |a| |x a|. Let
0 be given and set = . Then if 0 |x a| , |x| |a| |x a| = . Hence limx a |x| = |a| and

(x) = |x| is continuous on R .

15.3 Partial Derivatives ET 14.3

1. (a) represents the rate of change of when we x and and consider as a function of the single variable , which

describes how quickly the temperature changes when longitude changes but latitude and time are constant.

represents the rate of change of when we x and and consider as a function of , which describes how quickly the

temperature changes when latitude changes but longitude and time are constant. represents the rate of change of

when we x and and consider as a function of , which describes how quickly the temperature changes over time for

a constant longitude and latitude.

(b) (158 21 9) represents the rate of change of temperature at longitude 158 W, latitude 21 N at 9:00 AM when only

longitude varies. Since the air is warmer to the west than to the east, increasing longitude results in an increased air

temperature, so we would expect (158 21 9) to be positive. (158 21 9) represents the rate of change of temperature

at the same time and location when only latitude varies. Since the air is warmer to the south and cooler to the north,

increasing latitude results in a decreased air temperature, so we would expect (158 21 9) to be negative. (158 21 9)

represents the rate of change of temperature at the same time and location when only time varies. Since typically air
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temperature increases from the morning to the afternoon as the sun warms it, we would expect (158 21 9) to be

positive.

3. (a) By De nition 4, ( 15 30) = lim
0

( 15 + 30) ( 15 30) , which we can approximate by considering = 5

and = 5 and using the values given in the table:

( 15 30)
( 10 30) ( 15 30)

5
=

20 ( 26)

5
=
6

5
= 1 2,

( 15 30)
( 20 30) ( 15 30)

5
=

33 ( 26)

5
=

7

5
= 1 4. Averaging these values, we estimate

( 15 30) to be approximately 1 3. Thus, when the actual temperature is 15 C and the wind speed is 30 km h, the

apparent temperature rises by about 1 3 C for every degree that the actual temperature rises.

Similarly, ( 15 30) = lim
0

( 15 30 + ) ( 15 30) which we can approximate by considering = 10 and

= 10: ( 15 30)
( 15 40) ( 15 30)

10
=

27 ( 26)

10
=

1

10
= 0 1,

( 15 30)
( 15 20) ( 15 30)

10
=

24 ( 26)

10
=

2

10
= 0 2. Averaging these values, we estimate

( 15 30) to be approximately 0 15. Thus, when the actual temperature is 15 C and the wind speed is 30 km h, the

apparent temperature decreases by about 0 15 C for every km h that the wind speed increases.

(b) For a xed wind speed , the values of the wind-chill index increase as temperature increases (look at a column of

the table), so is positive. For a xed temperature , the values of decrease (or remain constant) as increases

(look at a row of the table), so is negative (or perhaps 0).

(c) For xed values of , the function values ( ) appear to become constant (or nearly constant) as increases, so the

corresponding rate of change is 0 or near 0 as increases. This suggests that lim ( ) = 0.

5. (a) If we start at (1 2) and move in the positive -direction, the graph of increases. Thus (1 2) is positive.

(b) If we start at (1 2) and move in the positive -direction, the graph of decreases. Thus (1 2) is negative.

7. (a) = ( ), so is the rate of change of in the -direction. is negative at ( 1 2) and if we move in the

positive -direction, the surface becomes less steep. Thus the values of are increasing and ( 1 2) is positive.

(b) is the rate of change of in the -direction. is negative at ( 1 2) and if we move in the positive -direction, the

surface becomes steeper. Thus the values of are decreasing, and ( 1 2) is negative.

9. First of all, if we start at the point (3 3) and move in the positive -direction, we see that both and decrease, while

increases. Both and have a low point at about (3 1 5), while is 0 at this point. So is de nitely the graph of , and

one of and is the graph of . To see which is which, we start at the point ( 3 1 5) and move in the positive -direction.

traces out a line with negative slope, while traces out a parabola opening downward. This tells us that is the -derivative

of . So is the graph of , is the graph of , and is the graph of .
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11. ( ) = 16 4 2 2 ( ) = 8 and ( ) = 2 (1 2) = 8 and (1 2) = 4. The graph

of is the paraboloid = 16 4 2 2 and the vertical plane = 2 intersects it in the parabola = 12 4 2, = 2

(the curve 1 in the rst gure). The slope of the tangent line

to this parabola at (1 2 8) is (1 2) = 8. Similarly the

plane = 1 intersects the paraboloid in the parabola

= 12 2, = 1 (the curve 2 in the second gure) and

the slope of the tangent line at (1 2 8) is (1 2) = 4.

13. ( ) = 2 + 2 + 2 = 2 + 2 , = 2 + 2

Note that the traces of in planes parallel to the -plane are parabolas which open downward for 1 and upward for

1, and the traces of in these planes are straight lines, which have negative slopes for 1 and positive slopes for

1. The traces of in planes parallel to the -plane are parabolas which always open upward, and the traces of in

these planes are straight lines with positive slopes.

15. ( ) = 5 3 ( ) = 0 3 = 3 , ( ) = 5 4 3

17. ( ) = cos ( ) = ( sin ) ( ) = sin , ( ) = ( 1) cos = cos

19. = (2 + 3 )10 = 10(2 + 3 )9 · 2 = 20(2 + 3 )9, = 10(2 + 3 )9 · 3 = 30(2 + 3 )9

21. ( ) =
+

( ) =
(1)( + ) ( )(1)

( + )2
=

2

( + )2
,

( ) =
( 1)( + ) ( )(1)

( + )2
=

2

( + )2

23. = sin cos = cos cos , = sin sin

25. ( ) = ln( 2 + 2) ( ) = · 2
2 + 2

+ ln( 2 + 2) · 1 = 2 2

2 + 2
+ ln( 2 + 2),

( ) = · 2
2 + 2

+ 0 =
2
2 + 2
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27. = = · ( 2) + · 1 = = 1 , = · 1 =

29. ( ) = 5 2 3 4 ( ) = 10 3 4, ( ) = 15 2 2 4, ( ) = 20 2 3 3

31. = ln( + 2 + 3 ) =
1

+ 2 + 3
, =

2

+ 2 + 3
, =

3

+ 2 + 3

33. = sin 1( ) = sin 1( ), = · 1

1 ( )2
( )+ sin 1( ) · =

1 2 2
+ sin 1( ),

= · 1

1 ( )2
( ) =

2

1 2 2

35. ( ) = 2 tan( ) ( ) = 2 tan( ),

( ) = 2 · sec2( ) · + 2 tan( ) = 2 sec2( ) + 2 tan( ),

( ) = 2 tan( ), ( ) = 2 sec2( ) · = 2 2 sec2( )

37. = 2
1 +

2
2 + · · ·+ 2 . For each = 1, , , = 1

2
2
1 +

2
2 + · · ·+ 2 1 2

(2 ) =
2
1 +

2
2 + · · ·+ 2

.

39. ( ) = ln + 2 + 2

( ) =
1

+ 2 + 2
1 + 1

2
( 2 + 2) 1 2(2 ) =

1

+ 2 + 2
1 +

2 + 2
,

so (3 4) =
1

3 + 32 + 42
1 +

3

32 + 42
= 1

8
1 + 3

5
= 1

5
.

41. ( ) =
+ +

( ) =
1( + + ) (1)

( + + )2
=

+

( + + )2
,

so (2 1 1) =
2 + ( 1)

(2 + 1 + ( 1))2
=
1

4
.

43. ( ) = 2 3

( ) = lim
0

( + ) ( )
= lim

0

( + ) 2 ( + )3 ( 2 3 )

= lim
0

( 2 3 2 3 2)
= lim

0
( 2 3 2 3 2) = 2 3 2

( ) = lim
0

( + ) ( )
= lim

0

( + )2 3( + ) ( 2 3 )
= lim

0

(2 + 3)

= lim
0
(2 + 3) = 2 3

45. 2 + 2 + 2 = 3 ( 2 + 2 + 2) = (3 ) 2 + 0 + 2 = 3 + · 1

2 3 = 3 2 (2 3 ) = 3 2 , so =
3 2

2 3
.

( 2 + 2 + 2) = (3 ) 0 + 2 + 2 = 3 + · 1 2 3 = 3 2

(2 3 ) = 3 2 , so =
3 2

2 3
.
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47. = arctan( ) ( ) = (arctan( )) 1 =
1

1 + ( )2
·

1 =
1 + 2 2

+ 1 1 =
+ 1 + 2 2

1 + 2 2
, so =

1 + 2 2

1 + + 2 2
.

( ) = (arctan( )) 0 =
1

1 + ( )2
· + · 1

1 + 2 2
=

1 + 2 2
+ 1

1 + 2 2
=

+ 1 + 2 2

1 + 2 2
=

1 + + 2 2
.

49. (a) = ( ) + ( ) = 0( ), = 0( )

(b) = ( + ). Let = + . Then = = (1) = 0( ) = 0( + ),

= = (1) = 0( ) = 0( + ).

51. ( ) = 3 5 + 2 4 ( ) = 3 2 5 + 8 3 , ( ) = 5 3 4 + 2 4. Then ( ) = 6 5 + 24 2 ,

( ) = 15 2 4 + 8 3, ( ) = 15 2 4 + 8 3, and ( ) = 20 3 3.

53. = 2 + 2 = 1
2
( 2 + 2) 1 2 · 2 =

2 + 2
, = 1

2
( 2 + 2) 1 2 · 2 =

2 + 2
. Then

=
1 · 2 + 2 · 1

2
( 2 + 2) 1 2(2 )

2 + 2
2 =

2 + 2 2 2 + 2

2 + 2
=

2 + 2 2

( 2 + 2)3 2
=

2

( 2 + 2)3 2
,

= 1
2

2 + 2 3 2
(2 ) =

( 2 + 2)3 2
, = 1

2
2 + 2 3 2

(2 ) =
( 2 + 2)3 2

,

=
1 · 2 + 2 · 1

2
( 2 + 2) 1 2(2 )

2 + 2
2 =

2 + 2 2 2 + 2

2 + 2
=

2 + 2 2

( 2 + 2)3 2
=

2

( 2 + 2)3 2
.

55. = arctan
+

1

=
1

1 + +
1

2 ·
(1)(1 ) ( + )( )

(1 )2
=

1 + 2

(1 )2 + ( + )2
=

1 + 2

1 + 2 + 2 + 2 2

=
1 + 2

(1 + 2)(1 + 2)
=

1

1 + 2

=
1

1 + +
1

2 ·
(1)(1 ) ( + )( )

(1 )2
=

1 + 2

(1 )2 + ( + )2
=

1 + 2

(1 + 2)(1 + 2)
=

1

1 + 2
.

Then = (1 + 2) 2 · 2 =
2

(1 + 2)2
, = 0, = 0, = (1 + 2) 2 · 2 =

2

(1 + 2)2
.

57. = sin( + 2 ) = · cos( + 2 )(1) + sin( + 2 ) · 1 = cos( + 2 ) + sin( + 2 ),

= ( sin( + 2 )(2)) + cos( + 2 )(2) = 2 cos( + 2 ) 2 sin( + 2 ),

= cos ( + 2 ) (2) = 2 cos( + 2 ),

= 2 · ( sin( + 2 )(1)) + cos ( + 2 ) · 2 = 2 cos( + 2 ) 2 sin( + 2 ). Thus = .
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59. = ln 2 + 2 = ln( 2 + 2)1 2 = 1
2 ln(

2 + 2) =
1

2

1
2 + 2

· 2 =
2 + 2

,

= ( 1)( 2 + 2) 2(2 ) =
2

( 2 + 2)2
and =

1

2

1
2 + 2

· 2 =
2 + 2

,

= ( 1)( 2 + 2) 2(2 ) =
2

( 2 + 2)2
. Thus = .

61. ( ) = 3 4 + 3 2 = 3 4 + 3 2 2, = 6 2, = 12 and

= 12 3 + 2 3 , = 36 2 + 2 3, = 72 .

63. ( ) = cos(4 + 3 + 2 )

= sin(4 + 3 + 2 )(4) = 4 sin(4 + 3 + 2 ), = 4 cos(4 + 3 + 2 )(3) = 12 cos(4 + 3 + 2 ),

= 12( sin(4 + 3 + 2 ))(2) = 24 sin(4 + 3 + 2 ) and

= sin(4 + 3 + 2 )(3) = 3 sin(4 + 3 + 2 ),

= 3 cos(4 + 3 + 2 )(2) = 6 cos(4 + 3 + 2 ), = 6( sin(4 + 3 + 2 ))(2) = 12 sin(4 + 3 + 2 ).

65. = sin = cos + sin · ( ) = (cos + sin ),

2

= (sin ) + (cos + sin ) ( ) = (sin + cos + sin ),

3

2
= ( sin ) + (sin + cos + sin ) · ( ) = (2 sin + cos + sin ).

67. =
+ 2

= ( + 2 ) 1 = ( + 2 ) 1,
2

= ( + 2 ) 2(1) = ( + 2 ) 2,

3

= ( 2)( + 2 ) 3(2) = 4( + 2 ) 3 =
4

( + 2 )3
and = ( 1)( + 2 ) 2(1) = ( + 2 ) 2,

2

= ( + 2 ) 2,
3

2
= 0.

69. By De nition 4, (3 2) = lim
0

(3 + 2) (3 2) which we can approximate by considering = 0 5 and = 0 5:

(3 2)
(3 5 2) (3 2)

0 5
=
22 4 17 5

0 5
= 9 8, (3 2)

(2 5 2) (3 2)

0 5
=
10 2 17 5

0 5
= 14 6. Averaging

these values, we estimate (3 2) to be approximately 12 2. Similarly, (3 2 2) = lim
0

(3 + 2 2) (3 2 2) which

we can approximate by considering = 0 5 and = 0 5: (3 2 2)
(3 5 2 2) (3 2 2)

0 5
=
26 1 15 9

0 5
= 20 4,

(3 2 2)
(2 5 2 2) (3 2 2)

0 5
=
9 3 15 9

0 5
= 13 2. Averaging these values, we have (3 2 2) 16 8.

To estimate (3 2), we rst need an estimate for (3 1 8):

(3 1 8)
(3 5 1 8) (3 1 8)

0 5
=
20 0 18 1

0 5
= 3 8, (3 1 8)

(2 5 1 8) (3 1 8)

0 5
=
12 5 18 1

0 5
= 11 2.

Averaging these values, we get (3 1 8) 7 5. Now ( ) = [ ( )] and ( ) is itself a function of two
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variables, so De nition 4 says that ( ) = [ ( )] = lim
0

( + ) ( )

(3 2) = lim
0

(3 2 + ) (3 2) .

We can estimate this value using our previous work with = 0 2 and = 0 2:

(3 2)
(3 2 2) (3 2)

0 2
=
16 8 12 2

0 2
= 23, (3 2)

(3 1 8) (3 2)

0 2
=
7 5 12 2

0 2
= 23 5.

Averaging these values, we estimate (3 2) to be approximately 23 25.

71. =
2 2

sin =
2 2

cos , = 2 2 2
sin , and = 2 2 2 2

sin .

Thus 2 = .

73. =
1

2 + 2 + 2
= 1

2
( 2 + 2 + 2) 3 2(2 ) = ( 2 + 2 + 2) 3 2 and

= ( 2 + 2 + 2) 3 2 3
2
( 2 + 2 + 2) 5 2(2 ) =

2 2 2 2

( 2 + 2 + 2)5 2
.

By symmetry, =
2 2 2 2

( 2 + 2 + 2)5 2
and =

2 2 2 2

( 2 + 2 + 2)5 2
.

Thus + + =
2 2 2 2 + 2 2 2 2 + 2 2 2 2

( 2 + 2 + 2)5 2
= 0.

75. Let = + , = . Then =
[ ( ) + ( )]

=
( )

+
( )

= 0( ) 0( ) and

=
[ 0( ) 0( )]

= [ 00( ) + 00( )] = 2[ 00( ) + 00( )]. Similarly, by using the Chain Rule we have

= 0( ) + 0( ) and = 00( ) + 00( ). Thus = 2 .

77. = ln( + ) =
+

and =
+

, so + =
+

+
+

=
+

+
= 1.

2

2
=

( + ) ( )

( + )2
=

+

( + )2
,

2

=
0 ( )

( + )2
=

+

( + )2
, and

2

2
=

( + ) ( )

( + )2
=

+

( + )2
. Thus

2

2

2

2

2 2

=
+

( + )2
·

+

( + )2

+

( + )2

2

=
( + )2

( + )4
( + )2

( + )4
= 0

79. If we x = 0 ( 0) is a function of a single variable , and = is a separable differential equation. Then

= = ln | | = ln | |+ ( 0), where ( 0) can depend on 0. Then

| | = ln| |+ ( 0), and since 0 and 0, we have = ln ( 0) = ( 0) ln = 1( 0) where

1( 0) =
( 0).

81. By the Chain Rule, taking the partial derivative of both sides with respect to 1 gives
1

1
=

[(1 1) + (1 2) + (1 3)]

1
or 2

1
= 2

1 . Thus
1
=

2

2
1

.
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83. By Exercise 82, = = , so = . Also, = = and = .

Since = , we have = · · = .

85. = 1
2

2, = ,
2

2
= . Thus ·

2

2
= 1

2
2 = .

87. ( ) = + 4 ( ) = 4 and ( ) = 3 ( ) = 3. Since and are continuous

everywhere but ( ) 6= ( ), Clairaut’s Theorem implies that such a function ( ) does not exist.

89. By the geometry of partial derivatives, the slope of the tangent line is (1 2). By implicit differentiation of

4 2 + 2 2 + 2 = 16, we get 8 + 2 ( ) = 0 = 4 , so when = 1 and = 2 we have

= 2. So the slope is (1 2) = 2. Thus the tangent line is given by 2 = 2( 1), = 2. Taking the

parameter to be = 1, we can write parametric equations for this line: = 1 + , = 2, = 2 2 .

91. By Clairaut’s Theorem, = ( ) = ( ) = = ( ) = ( ) = .

93. Let ( ) = ( 0) = ( 2) 3 2 0 = | | 3. But we are using the point (1 0), so near (1 0), ( ) = 2. Then

0( ) = 2 3 and 0(1) = 2, so using (1) we have (1 0) = 0(1) = 2.

95. (a) (b) For ( ) 6= (0 0),

( ) =
(3 2 3)( 2 + 2) ( 3 3)(2 )

( 2 + 2)2

=
4 + 4 2 3 5

( 2 + 2)2

and by symmetry ( ) =
5 4 3 2 4

( 2 + 2)2
.

(c) (0 0) = lim
0

( 0) (0 0)
= lim

0

(0 2) 0
= 0 and (0 0) = lim

0

(0 ) (0 0)
= 0.

(d) By (3), (0 0) = = lim
0

(0 ) (0 0)
= lim

0

( 5 0) 4

= 1 while by (2),

(0 0) = = lim
0

( 0) (0 0)
= lim

0

5 4

= 1.

(e) For ( ) 6= (0 0), we use a CAS to compute

( ) =
6 + 9 4 2 9 2 4 6

( 2 + 2)3

Now as ( ) (0 0) along the -axis, ( ) 1 while as

( ) (0 0) along the -axis, ( ) 1. Thus isn’t

continuous at (0 0) and Clairaut’s Theorem doesn’t apply, so there is

no contradiction. The graphs of and are identical except at the

origin, where we observe the discontinuity.


