Chapter 1 O

Parametric,
Vector, and Polar
Functions

system of teletype machines, wall-sized black-

boards, large table maps, and movable markers
representing airplanes. Today's radar data pro-
cessing includes an automatic display of aircraft
identification, speed, altitude, and velocity vectors.

I n 1935, air traffic control was conducted with a

A DC-10 plane flying due west at 600 mph en-
ters a region with a steady air current coming from
the southwest at 100 mph. How should the pilot
adjust the airplane’s course and speed to maintain
its original velocity vector? This type of problem is
covered in Section 10.2.
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Chapter 10 Overview

The material in this book is generally described as the calculus of a single variable, since il
deals with functions of one independent variable (usually x or 7). In this chapter you will apply
your understanding of single-variable calculus in three kinds of two-variable contexts, enabling
you to analyze some new kinds of curves (parametrically defined and polar) and to analyze
motion in the plane that does not proceed along a straight line. Interestingly enough, this will
not require the tools of multi-variable calculus, which you will probably learn in your next cal
culus course. We will simply use single-variable calculus in some new and interesting ways.

YRR ravaciic Functions

What you’ll learn about

» Parametric Curves in the Plane
* Slope and Concavity

« Arc Length

* Cycloids

...and why

Parametric equations enable us
to define some interesting and
important curves that would be
difficult or impossible to define in
the form y = f(x).

Parametric Curves in the Plane

We reviewed parametrically defined functions in Section 1.4. Instead of defining the
points (x, v) on a planar curve by relating y directly to x, we can define both coordinates as
functions of a parameter 7, The resulting set of points may or may not define y as a func-
tion of x (that is, the parametric curve might fail the vertical line test).

EXAMPLE 1

Sketch the parametric curves and identify those which define y as a function of x. In
each case, eliminate the parameter to find an equation that relates x and y directly.

Reviewing Some Parametric Curves

(a) x =cost and y = sint for ¢ in the interval [0, 2)

(b)x =3cost and y = 2sin ¢t fortin the interval [0, 4]

(¢)x=V7 and y =1 — 2 for ¢ in the interval [0, 4]
SOLUTION

(a) This is probably the best-known parametrization of all. The curve is the unit circle
(Figure 10.1a), and it does not define y as a function of x. To eliminate the parameter, we
use the identity (cos 7)2 + (sin )? = 1 to write x*> + y? = 1.
(b) This parametrization stretches the unit circle by a factor of 3 horizontally and by a factor
of 2 vertically. The result is an ellipse (Figure 10.1b), which is traced twice as 7 covers the in-
terval [0, 477]. (In fact, the point (3, 0) is visited three times.) It does not define y as a

y\2

2
function of x. We use the same identity as in part (a) to write (%) + (2) =1

(¢) This parametrization produces a segment of a parabola (Figure 10.1c). It does define
y as a function of x. Since t = x?, we write y = =2 Now try Exercise 1.
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(a) (b) (c)

Figure 10.1 A collection of parametric curves (Example 1). Each point (x, y) is determined by
parametric functions of #, but only the parametrization in graph (c) determines y as a function of x.
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3

Figure 10.2 The parametric curve
defined in Example 2.

[0, 7] by [-0.1,0.1]

Slope and Concavity

We can analyze the slope and concavity of parametric curves just as we can with explicitly-
defined curves. The slope of the curve is still dy/dx, and the concavity still depends on
d?y/dx?, so all that is needed is a way of differentiating with respect to x when everything
is given in terms of 7. The required parametric differentiation formulas are straightforward
applications of the Chain Rule,

Parametric Differentiation Formulas

If x and y are both differentiable functions of ¢ and if dx/dr # 0, then

dy _ dy/dt

dx  dx/dt’
If y" = dy/dx is also a differentiable function of ¢, then
iy rpide s dyyds
dx? E(y i dx/dt’

| EXAMPLE 2 Analyzing a Parametric Curve
Consider the curve defined parametrically by x = * — Sand y = 2 sin ¢ for 0 < ¢ < 7.

(a) Sketch a graph of the curve in the viewing window [—7, 7] by [—4, 4]. Indicate the
direction in which it is traced.

(b) Find the highest point on the curve. Justify your answer.

(¢) Find all points of inflection on the curve. Justify your answer.

SOLUTION
(a) The curve is shown in Figure 10.2.
‘ (b) We seek to maximize y as a function of 7, so we compute dy/dt = 2 cos . Since dv/dt
is positive for 0 = ¢ < 77/2 and negative for 7/2 < t = 7, the maximum occurs when
t = /2. Substituting this 7 value into the parametrization, we find the highest point to be
‘ approximately (—2.533, 2).
(c) First we compute d’y/dx.
dv _avldi  2cost  cost
de —dxdr T 2 Tt
‘ (—sin £)(t) — (1)(cos 1)
dy _ dy'/di _ E _ _tsint+ cost

dx?  dv/dt 2t 27

A graph of
_ _Isinf+cost

¥ on the interval [0, 7] (Figure 10.3)

Figure 10.3 The graph of d*y/dx? for the ‘ shows a sign change at r = 2.798386... . Substituting this  value into the parametriza-

parametric curve in Example 2 shows a
sign change at = 2.798386 ... , indicating

a point of inflection on the curve.
(Example 2)

tion, we find the point of inflection to be approximately (2.831, 0.673).

| Now try Exercise 19.

Arc Length

In Section 7.4 we derived two different formulas for arc length, each of them based on an

approximation of the curve by tiny straight line segments with length VAx2 + Ay
(See Figure 10.4.)
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Here is a third formula based on the same approximation.
(b, d)

Arc Length of a Parametrized Curve

Let L be the length of a parametric curve that is traversed exactly once as f increases
from 7, to f,.

If dx/dt and dy/dt are continuous functions of #, then

0

Figure 10.4 The graph of f, approxi-

mated by line segments.

x=cosdr,y=sindr,0< <27
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| EXAMPLE 3 Measuring a Parametric Curve
Find the length of the astroid (Figure 10.5)

x=cos?t, y=sint, 0=1=2m

SOLUTION
Solve Analytically The curve is traced once as ¢ goes from 0 to 27. Because of the
curve’s symmetry with respect to the coordinate axes, its length is four times the length

of the first quadrant portion. We have
2

2
(‘;}:) - ((3 cos? t)(—sin r)) T

)

Figure 10.5 The astroid in Example 3. (—)- = ((3 sin? t)(cos r)) = 9sin*tcos’ ¢

5
-*) = V9 cos?tsin? 1 (cos? t + sin? 1)

="V9cos?rsin?t

= 3|cos ¢ sin 1].

Thus, the length of the first quadrant portion of the curve is

/2 /2
J 3|cos tsin | df = BJ. costsintdf costsint=00=t=x/2
0 0
/2
= =sin? f] u=sint du=costdt
0

The length of the astroid is 4(3/2) = 6.
‘{ Support Numerically NINT (3|cos ¢sin ], 1, 0, 27) = 6. Now try Exercise 29.

o at

Figure 10.6 The position of P(x, y) on
the edge of the wheel when the wheel has

turned ¢ radians. (Example 4)

Cycloids

Suppose that a wheel of radius a rolls along a horizontal line without slipping (see
Figure 10.6). The path traced by a point P on the wheel’s edge is a cycloid, where P is
originally at the origin.
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Huygens’s Cloc'l_(_

The problem with a pendulum clock
whose bob swings in a circular arc is
that the frequency of the swing de-
pends on the amplitude of the swing.
The wider the swing, the longer it takes
the bob to return to center.

This does not happen if the bob can
be made to swing in a cycloid. In 1673,
Christiaan Huygens (1629~1695), the
Dutch mathematician, physicist, and
astronomer who discovered the rings of
Saturn, designed a pendulum clock
whose bob would swing in a cycloid.
Driven by a need to make accurate
determinations of longitude at sea, he
hung the bob from a fine wire con-
strained by guards that caused it to
draw up as it swung away from center.
How were the guards shaped? They
were cycloids, too.

Guard
cycloid

Guard
cycloid

Cycloid

.
» g i@

[0, 37] by [-2. 4]

Figure 10.7 The graph of the cycloid
x=t—sint,y=1—cost,t =0.
(Example 5)
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EXAMPLE 4 Finding Parametric Equations for a Cycloid
Find parametric equations for the path of the point P in Figure 10.6.

SOLUTION

We suppose that the wheel rolls to the right, P being at the origin when the turn angle ¢
equals 0. Figure 10.6 shows the wheel after it has turned ¢ radians. The base of the wheel is

at distance af from the origin. The wheel’s center is at (at, a), and the coordinates of P are
x=at+acosf, y=a+ asinb

To express # in terms of ¢, we observe that ¢ + 0 = 37/2 + 2k for some integer k, so

0= A —t+ 2k,
2
Thus,
cos 8 = cos (3777 — Zkﬂ') = —sin f,
. .| 37
sin @ = sin (7 = e Zkﬂ-) = —Cos 1.
Therefore,

X=at—asint= a(t— sint),

y=a—acost=all —cost).

Investigating Cycloids

Consider the cycloids with parametric equations

Now try Exercise 41.

x=a(t—sint), y=all —cost), a=>0.

. Graph the equations fora = 1, 2, and 3.

Find the x-intercepts.

. Show that y = 0 for all .

. Explain why the arches of a cycloid are congruent.

. What is the maximum value of y? Where is it attained?

SR W=

. Describe the graph of a cycloid.

| EXAMPLE 5 Finding Length

Find the length of one arch of the cycloid

x=a(t—sint), y=a(l —cost), a=>0.

SOLUTION

Figure 10.7 shows the first arch of the cycloid and part of the next for @ = 1. In Explo-
ration 1 you found that the x-intercepts occur at f equal to multiples of 277 and that the

arches are congruent.
The length of the first arch is
2w 2 2
|, UG+ (Gfa
0

dx
di

dy
d

continued



‘We have
dx 2
dt
dy 2
dt

(3

dx
dt

dt

|

Therefore,

N

dx \?
[

The length of one arch of the cycloid is 8a.

Quick Review 10.1 (For help, go to Appendix A.1.)
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=[a(l — cos1)]* = a*(1 — 2 cost + cos? 1)

= [asin f]? = a?sin’t
=aV2—2cost. a>0,sin’t+ cos?t=1

dt

2 2
(ﬂ) dt = a j V2 —2costdt=8a Using NINT
0

Now try Exercise 43.

Use algebra or a trig identity to write an equation relating x and y.
l.x=¢t+1and y=2¢r+3
2. x=3t and y =54 =3
3. x
4. x

S.x=tanf and y = sec 0

sint and y = cos ¢

Il

sin7cos ¢t and y = sin(2r)

6. x=cscd and y = cot 8

7. x =cos 0 and y = cos(20)

8. x =sin 0 and y = cos(20)

9. x =cos 6 and y = sin 0 O=0=m
10. x =cos @ and y = sin 0 (m=60=2m

Section 10.1 Exercises

In Exercises 1-6, sketch the parametric curves and identify those
which define y as a function of x. In each case, eliminate the parame-
ter to find an equation that relates x and y directly.

1. x=2t+3 and y =4t — 3 for ¢ in the interval [0, 3]
+
2.x=Vtr—2 and y=r 8

3.x=tant and y = sec ¢ forin the interval [0, 7/4]

for r in the interval [3, 11]

4, x=sin¢ and y = 2 cos ¢ fortin the interval [0, 7]
5. x=sin/ and y = cos(2r) for ¢ in the interval [0, 247]

6. x = sin 61 and y = 2¢ for 7 in the interval [0, 7/2]

In Exercises 7-16, find (a) dv/dx and (b) d>y/dx* in terms of 1.

7.x=4sint, y=2cost 8. x =cost, y=\/§cosr
9. x=—Vi+1, y=V3 10.x=1/, y=-2+Int
1L x= -3t y=¢ R.x=12414 y=12—1
13. x=tant, y=sect 14, x = 2cost, y = cos(2n)

15. x = In(2r). v =In(3p*

16. x =1In(57), y=¢"

In Exercises 17-22,
(a) sketch the curve over the given r-interval, indicating the direction
in which it is traced,

(b) identify the requested point, and

(c) justify that you have found the requested point by analyzing an
appropriate derivative.

17. x=1t+1, y=£2+1,

18. x=£2+2, y=7-2+3,

—2=r=<2

=23

Lowest point

Leftmost point

19. x=2sint, y=cost, 0=t=q7 Rightmost point
20, x=tant, y=2sect, —1=t=1 Lowest point
21, x=2sint, y=cos(2n), 15=1=4535 Highest point
22. x=1In(51), y=In4r), 0<t=10 Rightmost point

In Exercises 23-26, find the points at which the tangent line to the
curve is (a) horizontal or (b) vertical.

23. x=2+cost, y=-—l-+sins

25, .x=2—1,

y=1+3sint

24. x = sect, y=1— 4t

26. x = -2+ 3cost,

y=tant
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In Exercises 27-34, find the length of the curve. (For an algebraic
challenge, try evaluating the integrals without a calculator.)

27. x=cost, y=sint, 0=r=27

28, x=3sint, y=3cost, 0=t=7

29, x=8cos7+ 8tsint, y=8sins—8tcost, 0=r=7/2

30, x=2cos’t, y=2sin’t, 0=t <27

(214 3)2 S - S
3. x= 3 ; )—r+2, 0 =p=13
32
32.)(:0&%8)_, y=r+4+: 0=s1=2
33.x=%r3, y:%fz, 0=r=1

3. x=In(sect+tant) —sint, y=cost, 0=t=<x/3

35. Length is Independent of Parametrization To illustrate
the fact that the numbers we get for length do not usually
depend on the way we parametrize our curves, calculate the
length of the semicircle y = V1 — x? with these two different
parametrizations,

(@)x=cos2t, y=sin2t, 0=t=mx/2
~1/2=1r=1/2

36. Perimeter of an Ellipse TFind the length of the ellipse

(b) x =sinwt, y= cos i,

x=3cost, y=4sint, 0=r=2m.
37. Cartesian Length Formula The graph of a function y = f(x)
over an interval [a, b] automatically has the parametrization
x=x, y=f(),

The parameter in this case is x itself. Show that for this
parametrization, the length formula

a=x=bh,

reduces to the Cartesian formula

b 2
= f L+ (d—“‘) dx
' dx

derived in Section 7.4.

38. (Continuation of Exercise 37) Show that the Cartesian

formula
d 2
dx
=; + | — )
Jc /1 ( dy ) dy

for the length of the curve x = g(y), ¢ =y =d, from Section 7.4
is a special case of the parametric length formula

Exercises 39 and 40 refer to the region bounded by the x-axis and one

arch of the cycloid
x=alt—sint), y=a(l —cost)

that is shaded in the figure shown at the top of the next column.

> X
2a

39. Find the area of the shaded region. (Hint: dx = (dx/dt) dt)

40. Find the volume swept out by revolving the region about the
x-axis. (Hint: dV = wy? dx = 7v>(dx/dt) dr)

41. Curtate Cycloid Modify Example 4 slightly to find the
parametric equations for the motion of a point in the interior of
a wheel of radius @ as the wheel rolls along the horizontal line
without slipping. Assume that the point is at distance b from the
center of the wheel, where 0 < b < . This curve, known as a
curtate cycloid, has been used by artisans in designing the
arches of violins (Source: mathworld.wolfram.com).

42. Prolate Cycloid Modify Example 4 slightly to find the
parameltric equations for the motion of a point on the exterior of a
wheel of radius a as the wheel rolls along the horizontal line
without slipping. Assume that the point is at distance b from the
center of the wheel, where a << b << 2a. This curve, known as a
prolate cycloid, is traced out by a point on the outer edge of a
train’s flanged wheel as the train moves along a track. (If you
graph a prolate cycloid, you can see why they say that there is
always part of a forward-moving train that is moving backwards!)

43. Arc Length Find the length of one arch (that is, the curve
over one period) of the curtate cycloid defined parametrically by
x=3t—2sintandy =3 — 2 cos .

44. Arc Length Find the length of one arch (that is, the curve
over one period) of the prolate cycloid defined parametrically by
x=2t—3sintandy =2 — 3 cost.

Standardized Test Questions

You should solve the following problems without using a graphing
calculator.

45. True or False In a parametrization, if x is a continuous
function of ¢ and y is a continuous function of ¢, then y is a
continuous function of x. Justify your answer.

46. True or False If fis a function with domain all real numbers,
then the graph of f can be defined parametrically by x = ¢ and

vy =f(r) for —w < << o, Justify your answer.

47. Multiple Choice For which of the following parametrizations
of the unit circle will the circle be traversed clockwise?

0=¢t=27m

0=¢t=27

(A)x=cost, y=sint,
B)x=sint, y=cost,

(C)x= —cost, y=—sint, 0=¢r=27
(D) x = —sint, y=cost, 0=t=27w
(E)x=sins, y= —cost, 0=r=27



48. Multiple Choice A parametric curve is defined by x = sin¢
and v =csct for 0 << /2. This curve is

(A) increasing and concave up.

(B) increasing and concave down.

(C) decreasing and concave up.

(D) decreasing and concave down.

(E) decreasing with a point of inflection.

49, Multiple Choice The parametric curve defined by x = In{#),
vy =t for t > 0 is identical to the graph of the function

(A) y = Inx forall real x.
(B)y = In* forx > 0.
(C) y = ¢* for all real x.
(D) y=e* forx>0.
(E) y = In(e*) forx > 0.
50. Multiple Choice The curve parametrized by
= 6sin ¢t — 3 sin(7) and y = 6 cos t — 3 cos(71),

as shown in the diagram below, is traversed exactly once as 7
increases from 0 to 27 The total length of the curve is given by

&) .7V (6 sin ¢ — 3 sin(70) + (6 cos 1 = 3 cos(7)?dr

(B) J;]zr\/{é cos t — 3 cos(7? + (6 sin t — 3 sin (7)) dr

(© [T7V/(6 cos t — 21 cos(70)? — (6 sin ¢ — 21 sin(70))* dr

D) _’;)2#'\/(6 cos t — 21 cos(70)? + (—6 sin 1 + 21 sin(71))> dr

(E) _[:77\/(6 cos t — 3 cos(TN)? + (6 sin ¢ + 3sin (30))* dt

Explorations

51. Group Activity Involute of a Circle 1f a string wound
around a fixed circle is unwound while being held taut in the
plane of the circle, its end P traces an involute of the circle as
suggested by the diagram below. In the diagram, the circle is the
unit circle in the xy-plane, and the initial position of the tracing
point is the point (1, 0) on the x-axis. The unwound portion of
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the string is tangent to the circle at 0, and t is the radian measure
of the angle from the positive x-axis to the segment Q0.

(a) Derive parametric equations for the involute by expressing the
coordinates x and y of P in terms of ¢ for 1= 0.

(b) Find the length of the involute for 0 =1 =2m

Px,y)

— > X

52. (Continuation of Exercise 51) Repeat Exercise 51 using the
circle of radius a centered at the origin, x> + y? = a’.

In Exercises 53—56, a projectile is launched over horizontal ground at
an angle 6 with the horizontal and with initial velocity vy ft/sec. Its
path is given by the parametric equations

y = (vy sin 8)r — 167°.

(a) Find the length of the path traveled by the projectile.

x = (v, cos O)t,

(b) Estimate the maximum height of the projectile.
53. =20° wv,=150 54. 0=30°, vy,=130
55. 0=60°, v,=150 56. #=90°, v, =150

Extending the Ideas

If dx/dr and dy/dr are continuous, the parametric curve defined by
(x(1), y(1)) for @ = t = b is called smooth. If the curve is traversed
exactly once as 7 increases {rom a to b, and if y is a positive
function of x, then the curve can be revolved about the x-axis to
form a solid of revolution (see Section 7.3). The surface area of such
a solid is given by

Apply this formula in Exercises 57-60 to find the surface area when
the parametric curve is revolved about the x-axis.

57. x=cost, y=2+sint, 0=t=27w
58 x=2V5 y=Q030Y, 0=t=2
89. x=£r+2, y=t+1, 0=¢=3

60. x = In(sect+tanf) —sing, y=cost, 0=r=mu/3
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10.2

What you'll learn about
* Two-Dimensional Vectors
* Vector Operations

* Modeling Planar Motion

* Velocity, Acceleration, and
Speed

* Displacement and Distance
Traveled

...and why

The jump from one to two dimen-
sions (and eventually higher) is
easier than one might think,
thanks to the mathematics of
vectors.
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i Vectors in the Plane

Two-Dimensional Vectors

When an object moves along a straight line, its velocity can be determined by a single num-
ber that represents both magnitude and direction (forward if the number is positive, backward
if it is negative). The speed of an object moving on a path in a plane can still be represented by
a number, but how can we represent its direction when there are an infinite number of direc-
tions possible? Fortunately, we can represent both magnitude and direction with just two
numbers, just as we can represent any point in the plane with just two coordinates (which is
possible essentially for the same reason). This representation is what two-dimensional vectors
were designed to do.

While the pair (a, b) determines a point in the plane, it also determines a directed line
segment (or arrow) with its tail at the origin and its head at (a, b) (Figure 10.8). The length of
this arrow represents magnitude, while the direction in which it points represents direction. In
this way, the ordered pair (a, b) represents a mathematical object with both magnitude and di-
rection, called the position vector of (a, b).

Y y

(a.b) @ b)

{a. b)

0 Y0

Figure 10.8 The point represents the ordered pair (a, 5). The arrow (directed line segment)
represents the vector {a, b).

DEFINITION Two-Dimensional Vector

A two-dimensional vector v is an ordered pair of real numbers, denoted in component
form as (a, b). The numbers a and b are the components of the vector v. The standard
representation of the vector (a, b) is the arrow from the origin to the point (a, b).
The magnitude (or absolute value) of v, denoted |v|, is the length of the arrow, and the
direction of v is the direction in which the arrow is pointing. The vector 0 = (0, 0),
called the zero vector, has zero length and no direction.

The distance formula in the plane gives a simple computational formula for magnitude.

Magnitude of a Vector

The magnitude or absolute value of the vector {a, b) is the nonnegative real

number [{a, b)| = Va?® + b2,

Direction can be quantified in several ways; for example, navigators use bearings from
compass points, The simplest choice for us is to measure direction as we do with the
trigonometric functions, using the usual position angle formed with the positive x-axis as
the initial ray and the vector as the terminal ray. In this way, every nonzero vector deter-
mines a unique direction angle 6 satisfying (in degrees) 0 = # << 360 or (in radians)
0 =0 < 27 (See Figure 10.10 for an example.)



Figure 10.9 The arrows OR and OP
both represent the vector (3, 4}, as would
any arrow with the same length pointing in
the same direction. Such arrows are called
equivalent.

y

(_1’\@) Z
v\
| | \I | ¥
=5 2
_zl»

Figure 10.10 The vector v in Example 1

is represented by an arrow from the origin
to the point (—1, \/5)

I
I
— 3 . .
\40,, iy=3sm40

\ il | x

x=3cos40° 3

—1+

Figure 10.11 The vector in Example 2
is represented by an arrow from the
origin to the point (3 cos 40°, 3 sin 40°).

Why Not Use Slope for Direction?

Notice that slope is inadequate for de-
termining the direction of a vector, since
two vectors with the same slope could
be pointing in opposite directions. More-
over, vectors are still useful in dimen-
sions higher than 2, while slope is not.
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Direction Angle of a Vector

The direction angle of a nonzero vector v is the smallest nonnegative angle 6
formed with the positive x-axis as the initial ray and the standard representation
of v as the terminal ray.

This textbook uses boldface variables to represent vectors (for example, u and v) to dis-
tinguish them from numbers. In handwritten form it is customary to distinguish vector
variables by arrows (for example, i/ and V). We also use angled brackets to distinguish a
vector {x, y) from a point (x, y) in the plane, although it is not uncommon to see (x, y)
used for both, especially in handwritten form.

It is often convenient in applications to represent vectors with arrows that begin at points
other than the origin. The important thing to remember is that any two arrows with the same
length and pointing in the same direction represent the same vector. In Figure 10.9, for ex-
ample, the vector (3, 4) is shown represented by OR, an arrow with initial point Q and
terminal point R, as well as by its standard representation OP. Two arrows that represent
the same vector are said to be equivalent.

The quick way to associate arrows with the vectors they represent is to use the following
rule.

Head Minus Tail (HMT) Rule

If an arrow has initial point (x,, y,) and terminal point (x,, y,), it represents the
vector {x, — X, ¥ — ¥1)-

‘ EXAMPLE 1 Finding Magnitude and Direction
Find the magnitude and the direction angle 6 of the vector v = (—1, \/5) (Figure 10.10).
| SOLUTION

The magnitude of v is |v| = V=1 -0 + (V3 — 0)2 = 2. Using triangle ratios, we see
that the direction angle # satisfies cos § = —1/2 and sin 6 = V3/2,50 8 = 120° or 277/3
radians.

Now try Exercise 5.

‘ EXAMPLE 2 Finding Component Form
Find the component form of a vector with magnitude 3 and direction angle 40°.

SOLUTION

The components of the vector, found trigonometrically, are x = 3 cos 40° and y = 3 sin 40°
(Figure 10.11).

The vector is (3 cos 40°, 3 sin 40°) = (2.298, 1.928).

Now try Exercise 13.

Vector Operations

The algebra of vectors sometimes involves working with vectors and numbers at the same
time, In this context, we refer to the numbers as scalars. The two most basic algebraic opera-
tions involving vectors are vector addition (adding a vector to a vector) and scalar multiplica-
tion (multiplying a vector by a number). Both operations are easily represented geometrically.
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Figure 10.13 Representations of u and
several scalar multiples of u.
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DEFINITION Vector Addition and Scalar Multiplication
Letu = {u;, u,) and v = (v, v,} be vectors and let k be a real number (scalar).
The sum (or resultant) of the vectors u and v is the vector

u+v=(uy+ v, o).
The product of the scalar k and the vector u is

ku = k(uy, uy) = (kuy, kuy).
The opposite of a vector v is —v = (—1)v. We define vector subtraction by

u—v=u-+(—v).

v . ; ; .
The vector W is a vector of magnitude 1, called a unit vector. Its component form is
v

{cos @, sin #), where @ is the direction angle of v. For this reason, _l is sometimes called
v

the direction vector of v.

The sum of two vectors u and v can be represented geometrically by arrows in two ways.
In the tail-to-head representation, the arrow from the origin to (u,, 1) is the standard repre-
sentation of u, the arrow from (u,, u,) to (u; + vy, uy + v,,) represents v (as you can verify by
the HMT Rule), and the arrow from the origin to (i, + v, it, - v,) then is the standard repre-
sentation of u + v (Figure 10.12a).

In the parallelogram representation, the standard representations of u and v determine
a parallelogram whose diagonal is the standard representation of u + v (Figure 10.12b).

u+v /

(a) (b)

Figure 10.12 Two ways to represent vector addition geometrically: (a) tail-to-head and
(b) parallelogram.

The product ku of the scalar k and the vector u can be represented by a stretch (or shrink)
of u by a factor of k. If & > 0, then ku points in the same direction as u; if k << 0, then ku
points in the opposite direction (Figure 10.13).

EXAMPLE 3 Performing Operations on Vectors
Let u=(=1,3) and v = (4, 7). Find the following.

(a) 2u + 3v (c)

SOLUTION
(@) 2u + 3v = 2(—1,3) + 34, 7)
= (2(=1) + 3(4), 2(3) + 3(7)) = {10, 27)

(b)u —v

Tu
2

continued
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NOT TO SCALE

Figure 10.14 Vectors representing
the velocities of the airplane and tail
wind in Example 4.
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Mu—v={(13—{&7)
=(-1—4,3—7)=(-5,—4)

g R R R

Vector operations have many of the properties of their real-number counterparts.

|
(c) Su

Now try Exercise 21.

Properties of Vector Operations

Let u, v, w be vectors and a, b be scalars.

l.u+v=v+au 2. (u+v)+w=u+(v+w
3.ut+0=u 4. u+(—w)=0

5. 0u=0 6. lu=nu

7. a(bu) = (ab)u 8. a(u+ v) =au+ av

9. (a + bu=aqau+ bu

Modeling Planar Motion

Although vectors are used in many other physical applications, our primary reason for
introducing them into this course is to model the motion of objects moving in a coordi-
nate plane. You may have seen vector problems of the following type in a physics or
mechanics course.

EXAMPLE 4 Finding Ground Speed and Direction

A Boeing® 7279 airplane, flying due east at 500 mph in still air, encounters a 70-mph tail

wind acting in the direction 60° north of east. The airplane holds its compass heading due

east but, because of the wind, acquires a new ground speed and direction. What are they?
SOLUTION

If u = the velocity of the airplane alone and v = the velocity of the tail wind, then
|u| = 500 and |v| = 70 (Figure 10.14).

We need to find the magnitude and direction of the resultant vector u + v. If we let the
positive x-axis represent east and the positive y-axis represent north, then the compo-
nent forms of u and v are

u=(500,0) and v ={70cos60° 70 sin 60° = (35,35V3).
Therefore,

u+v=(53535V3),

lu+ v| = V5352 + (35V/3)2 ~ 538.4,

and e it 35V3
535

6.55

Interpret The new ground speed of the airplane is about 538.4 mph, and its new
direction is about 6.5° north of east. Now try Exercise 25.
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[-2, 2] by [0, 25]
016

Figure 10.15 The path of the particle in
Example 5 from 7 = O to 1 = 6. The red
arrow shows the velocity vector at r = 6.

A Word About Differentiability

Our definitions can be expanded to a
calculus of vectors, in which (for ex-
ample) av/dt = a(1), but it is not our in-
tention to get into that here. We have
therefore finessed the fine point of vec-
tor differentiability by requiring the
path of our particle to be “smooth.”
The path can have vertical tangents,
fail the vertical line test, and loop back
on itself, but corners and cusps are still
problematic.

Chapter 10  Parametric, Vector, and Polar Functions

Recall that if the position x of an object moving along a line is given as a function of time ¢,
then the velocity of the object is dx/dt and the acceleration of the object is d2x/df>. It is al-
most as simple to relate position, velocity, and acceleration for an object moving in the
plane, because we can model those functions with vectors and treat the components of the
vectors as separate linear models. Example 5 shows how simple this modeling actually is.

EXAMPLE 5 Doing Calculus Componentwise

A particle moves in the plane so that its position at any time ¢ = 0 is given by (sin ¢, 2/2).

(a) Find the position vector of the particle at time 1.

(b) Find the velocity vector of the particle at time 7.

(c) Find the acceleration of the particle at time 7.

(d) Describe the position and motion of the particle at time ¢ = 6.

SOLUTION

(a) The position vector, which has the same components as the position point, is {sin ¢, 12/2}.
In fact, it could also be represented as (sin ¢, £/2), since the context would identify it as
a vector.

(b) Differentiate each component of the position vector to get (cos f, ).

(¢) Differentiate each component of the velocity vector to get (—sin 4, 1}.

(d) The particle is at the point (sin 6, 18), with velocity {cos 6, 6) and acceleration
(—sin 6, 1).

You can graph the path of this particle parametrically, letting x = sin(#) and y = #%/2. In
Figure 10.15 we show the path of the particle from ¢ = 0 to = 6. The red arrow at the
point (sin 6, 18) represents the velocity vector (cos 6, 6). It shows both the magnitude and
direction of the velocity at that moment in time. Now try Exercise 31.

Velocity, Acceleration, and Speed

We are now ready to give some definitions,

DEFINITIONS Velocity, Speed, Acceleration, and Direction
of Motion

Suppose a particle moves along a smooth curve in the plane so that its position at
any time 7 is (x(#)), ¥(¢), where x and y are differentiable functions of 1.

1. The particle’s position vector is r(1) = {x(1), y(£)).

2. The particle’s velocity vector is v(f) = <E d—)>
dt dt
3. The particle’s speed is the magnitude of v, denoted |v|. Speed is a scalar, not a
vector.
s )
gr el

5. The particle’s direction of motion is the direction vector W
v

4. The particle’s acceleration vector is a(7) =<

EXAMPLE 6 Studying Planar Motion

A particle moves in the plane with position vector r (1) = (sin (3t), cos (5¢)). Find the
velocity and acceleration vectors and determine the path of the particle.

continued



[-1.6, 1.6] by [-1.1, 1.1]
0=r=63

Figure 10.16 The path of the busy
particle in Example 6.

Figure 10.17 The ellipse on which the
particle travels in Example 7. The velocity
vector at the point (4, 0) is (0, —2), repre-
sented by an arrow tangent to the ellipse at
(4, 0) and pointing down. The direction of
the velocity at that point indicates that the
particle travels clockwise around the origin.
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| SOLUTION

Velocity v(7) = <—(sm(”>r)) (co%(SI))) = {3 cos(3r), —5 sin(51)).

dt
Acceleration a(t) = i(3 cos(3t)) ( 5 sm(Sr))) = {—9sin(37), —25 cos(50)).

! The path of the particle is found by graphmg (in parametric mode) the curve defined by
- x = sin(37) and y = cos(51) (Figure 10.16).

Now try Exercise 33.

| EXAMPLE 7 Studying Planar Motion

A particle moves in an elliptical path so that its position at any time ¢ = 0 is given by
(4sint, 2 cost).

(a) Find the velocity and acceleration vectors.

(b) Find the velocity, acceleration, speed, and direction of motion at r = /4.

(¢) Sketch the path of the particle and show the velocity vector at the point (4, 0).

(d) Does the particle travel clockwise or counterclockwise around the origin?
SOLUTION

(a) Velocity v(1) = <%(4 sin 1), %(2 cos t)> = (4dcost, —2sint)
a
Acceleration a(t) = <§I(4 cos 1), ;—1(42 sin r)> = (—4sint, —2 cos 1)

(b) Velocity v(m/4) = (4 cos(m/4), =2 sin(m/4)) = (2V2, ~V2)
Acceleration a(w/4) ={—4 sin(w/4), =2 cos(w/4)) = (—2\/_, —\6)

Speed = [v(m/4)| =[2V2, =V2)| = VeV22 + (-V2? = V10

(¢) The ellipse defined parametrically by x = 4 sin t and y = 2 cos  is shown in Figure 10.17.
At the point (4, 0), sin r = 1 and cos t = 0, so (1) =(4 cos 1, =2 sin 1) = (0, —2). The
vector {0, —2) is drawn tangent to the curve at (4, 0).

(d) As the vector in Figure 10.17 shows, the particle travels clockwise around the origin.

Now try Exercise 35.

Displacement and Distance Traveled

Recall that when a particle moves along a line with velocity v(r) the displacement (or
net distance traveled) from time t = @ to time t = b i IS given by f v(1) di, while the (total)

distance traveled in that time interval is given by f \v(1)| dt. When a particle moves in
the plane with velocity vector v(7), displacement and distance traveled can be found by
applying the same integrals to the vector v, although in slightly different ways.

DEFINITIONS Displacement and Distance Traveled

Suppose a particle moves along a path in the plane so that its velocity at any time 7 is
V(1) = (v,(1), vo(1)), where v, and v, are integrable functions of £.

The displacement from r = a to t = b is given by the vector

b b
( J v, (1) dt, f vy(1) dr>.

continued
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[-5, 15] by [0, 23]
0<r<4

Figure 10.18 The path traveled by the
particle in Example 8 as it goes from

(1,5) to (9, 21) in four seconds (Example 9).

Chapter 10 Parametric, Vector, and Polar Functions

The preceding vector is added to the position at time 1 = a to get the position at
time ¢ = b.

The distance traveled fromr =atot = b is

b b
f [v(n)|dt = J- V (7 (0)? + (v,(8))? dt.

There are two things worth noting about the formula for distance traveled. First of all,
it is a nice example of the integral as an accumulator, since we are summing up bits of
speed multiplied by bits of time, which equals bits of positive distance. Secondly, it is
actually a new look at an old formula. Substitute x/dr for v,(r) and dy/dt for v,(r) and
vou get the arc length formula for a curve defined parametrically (Section 10.1). This
formula makes sense, since the distance the particle travels is precisely the length of
the path along which it moves.

EXAMPLE 8 Finding Displacement and Distance Traveled

A particle moves in the plane with velocity vector v(2) = (1 — 3 cos 71, 21 — 7 sin 7).
At t = 0, the particle is at the point (1, 5).

(a) Find the position of the particle at r = 4.
(b) What is the total distance traveled by the particle from t = 0 to t = 47
SOLUTION
4 4
(a) Displacement = (fo (t — 3 cos wr)dr, fo (2t — ar sin wt)dt) =48, 16),
The particle is at the point (1 + 8,5 + 16) = (9, 21).

2
(b) Distance traveled = [["V/(r = 3 cos m)? + (21 — m sin m1)? dr = 33.533,
Now try Exercise 37.

| EXAMPLE 9 Finding the Path of the Particle
Determine the path that the particle in Example 8 travels going from (1, 5) to (9, 21) .

SOLUTION

The velocity vector and the position at t = () combine to give us the vector equivalent of an
initial value problem. We simply find the components of the position vector separately.

i dx
— =t — 3 cos 7t
dr ’
x= 5 3sinat + C Antidifferentiate.
2
x=5—35inm+l x=1when t= 0.
dy .
— = 2¢ — qr sin ¢
dt

y=t>+cosmt+ C Antidifferentiate.

y=t>+cosmt + 4 y=5when t=0.

We then graph the position {(+*/2 — 3 sin @t + 1, 1> + cos @t + 4) parametrically from
t = 0tot = 4. The path is shown in Figure 10.18.

Now try Exercise 41.
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Quick Review 10.2

(For help, go to Sections 1.1, 4.3, and 10.1.)

In Exercises 14, let P = (1, 2) and Q = (5, 3).
1. Find the distance between the points P and Q.
2. Find the slope of the line segment PQ.

3. It R = (3, b), determine b so that segments PQ and RQ are
collinear.

4, If R = (3, b), determine b so that segments PQ and RQ are
perpendicular.

In Exercises 5 and 6, determine the missing coordinate so that the
four points form a parallelogram ABCD.

5. A=(0,0, B=(1,3), C=(,3), D=(a,0)
6. A=(1,1), B=(3,5), C=(8,b), D=(6,2)

7. Find the velocity and acceleration of a particle moving along a
line if its position at time 7 is given by x(z) = 7 sin 1.

8. A particle moves along the x-axis with velocity v(z) = 3> — 12¢
for £ = 0. If its position is x = 40 when ¢ = 0, where is the parti-
cle when t = 47

9. A particle moves along the x-axis with velocity v(z) = 3 — 12¢
for r = 0. What is the total distance traveled by the particle from
t=0tor =47

10. Find the length of the curve defined parametrically by x = sin(2f)
and y = cos(3f) for 0 =t = 27,

Section 10.2 Exercises

In Exercises 14, find the component form of the vector.
1. the vector from the origin to the point A = (2, 3)
2. the vector from the point A = (2, 3) to the origin
3. the vector PO, where P = (1,3)and @ = (2, —1)
4. the vector OTD, where O is the origin and P is the midpoint of the

segment RS connecting R = (2, —1) and § = (—4, 3).

In Exercises 5-10, find the magnitude of the vector and the direction
angle 6 it forms with the positive x-axis (0 = 6 << 360°).

5. (2,2) 6. (—V2,V72)
7. (V3, 1) T LY )
9, (—5,0) 10. (0, 4)

In Exercises 11-16, find the component form of the vector with the
given magnitude that forms the given directional angle with the positive
X-axis.

11. 4, 180°
13. 3, 100°
15. 3\/5, 7/4 radians

12. 6, 270°
14. 13, 200°
16. 2\/5, 71/ 6 radians

In Exercises 17-24, letu = (3, —2) and v = (—2, 5). Find the
(a) component form and (b) magnitude of the vector.

17. 3u 18. —2v
19. u+v 20, u—v
21. 2u — 3v 22. —2u + 5v
3 4 3 12
23. g'll =+ “gv 24, —El.l -+ EV

25. Navigation An airplane, flying in the direction 20° east of north
at 325 mph in still air, encounters a 40-mph tail wind acting in the
direction 40° west of north. The airplane maintains its compass
heading but, because of the wind, acquires a new ground speed
and direction. What are they?

26. A river is flowing due east at 2 mph. A canoeist paddles across
the river at 4 mph with his bow aimed directly northwest (a di-
rection angle of 135°). What is the true direction angle of the
canoeist’s path, and how fast is the canoe going?

In Exercises 27-32, a particle travels in the plane with position vector
r(f). Find (a) the velocity vector v(f) and (b) the acceleration vector a(z).
27. r(t) = (32 2% 28. r(t) = (sin 2¢, 2 cos 1)

29. r(t) = {te ", e ") 30. r(t) = (2 cos 31, 2 sin 41)
31. r() = {2 + sin 21, # — cos 21)

32, r(f) = {tsint, rcos 1)

33. A particle moves in the plane with position vector (cos 3¢, sin 21).
Find the velocity and acceleration vectors and determine the path
of the particle.

34. A particle moves in the plane with position vector (sin 4t, cos 31).
Find the velocity and acceleration vectors and determine the path
of the particle.

35. A particle moves in the plane so that its position at any time t = 0
is given by x = sin 4f cos t and y = sin 2¢.
(a) Find the velocity and speed of the particle when 7 = 57/4.
(b) Draw the path of the particle and show the velocity vector at
1= 5mu/d.
(c) Is the particle moving to the left or to the right when ¢ = 57/47
36. A particle moves in the plane so that its position at any time
t=0isgivenbyx=e' + e "andy=¢e' — e "
(a) Find the velocity vector.

L dyldt
b) Find 1 ;
B
(c) Show algebraically that the particle moves on the hyperbola

P2—y =4

(d) Sketch the path of the particle, showing the velocity vector
att=0.
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In Exercises 37—40, the velocity v(f) of a particle moving in the plane
is given, along with the position of the particle at time ¢ = (. Find

(a) the position of the particle at time ¢ = 3, and (b) the distance the
particle travels from t = O to 7 = 3.

37. v() = (32 — 21, 1 + cos wt); (2,6)
38. v(t) = (2w cos 4t, 4 sin 2wt);  (7,2)
9. v =+ DL+ 3,2
40. vin = —ne +1n (1,1)
41. Sketch the path that the particle travels in Exercise 37.
42. Sketch the path that the particle travels in Exercise 38.
43. A point moves in the plane so that x = 5 cos(7f/6) and
v = 3 sin(7t/6).
(a) Find the speed of the point at 1 = 2,
(b) Find the acceleration vector at r = 2.

(¢) Eliminate the parameter and find an equation in x and y that
defines the curve on which the point moves.

44. A particle moves with position vector (sec 7, tan ) for
0=:r<1/2,

(a) Find the velocity and speed of the particle at = 1/4.

(b) The particle moves along a hyperbola. Eliminate the parameter
to find an equation of the hyperbola in terms of x and y.
(¢) Sketch the path of the particle over the time interval
0=r<1/2.

45, A particle moves on the circle x* + y> = 1 so that its position vector

at any time 1 = 0 is (1;# s )
B VA= Iy

(a) Find the velocity vector.

(b) Is the particle ever at rest? Justify your answer,

(c) Give the coordinates of the point that the particle approaches
as ! increases without bound.

46. A particle moves in the plane so that its position at any time ¢,
0 =1 = 2, is given parametrically by x = sin r and y = cos(21).
(a) Find the velocity vector for the particle.

(b) For what values of ¢ is the particle at rest?
(¢) Write an equation for the path of the particle in terms of
x and y that does not involve trigonometric functions.

(d) Sketch the path of the particle.
47. A particle moves in the plane so that its position at any time ,
0 =1 = 2, is given parametrically by x = ¢'sin f and y = ¢’ cos 1.
(a) Find the slope of the path of the particle at time 1 = /2.
(b) Find the speed of the particle when t = 1.

(c) Find the distance traveled by the particle along the path from
t=0tt=1.

48. The position of a particle at any time ¢ = 0 is given by
x(6) =12 = 3and y(1) = 313
(a) Find the magnitude of the velocity vector at 1 = 4.

(b) Find the total distance traveled by the particle from ¢ = 0
tor=4.

(¢) Find dy/dx as a function of x.

49.

50.

An object moving along a curve in the xy-plane has position
(x(), y(n) at time 1 = 0 with dx/dt = 2 + sin(s?). The derivative
dy/dr is not explicitly given. At time ¢ = 2. the object is at
position (3, 5).

(a) Find the x-coordinate of the position of the object at time
=4,

(b) At time ¢ = 2, the value of dy/dt is —6. Write an equation for
the line tangent to the curve at the point (x(2), ¥(2)).

(c) Find the speed of the object at time ¢ = 2.

(d) For ¢ = 3, the line tangent to the curve at (x(), y(f)) has a
slope of 2t — 1. Find the acceleration vector of the object at time
t=4.

For O = ¢ = 3, an object moving along a curve in the xy-plane has
position (x(7), ¥(7)) with dv/dr = sin(*) and dy/dt = 3 cos(). At
time ¢ = 2, the object is at position (4, 5).

(a) Write an equation for the line tangent to the curve at (4, 5).
(b) Find the speed of the object at time t = 2.

(c) Find the total distance traveled by the object over the time
interval 0=r=1.

(d) Find the position of the object at time r = 3.

Standardized Test Questions

IT-— You may use a graphing calculator to solve the following

51.

52.

53:

54.

55

56.

problems.

True or False A scalar multiple of a vector v has the same
direction as v. Justify your answer.

True or False If a vector with direction angle 0° is added to a
vector with direction angle 90°, the result is a vector with direction
angle 45°. Justify your answer.

Multiple Choice The position of a particle in the xy-plane is
given by x = 2 + 1 and y = In{27 + 3) for all t = 0. The accel-
eration vector of the particle is

@A) (Zr, z ) (B) (2:, ~L). (©) (2 L).

2413 (2t + 3)? T2t +3)°

D) (2, %) (E) (2, 7—4—,).
(2t + 3)° (2t + 3)¢

Multiple Choice An object moving along a curve in the
xy-plane has position (x(¢), y(z)) with dx/dt = cos(f?) and

dv/dt = sin(#*). At time + = 0, the object is at position (4, 7).
Where is the particle when r = 27

(A) (—0.654,0.989) (B) (0.461, 0.452)  (C)(3.346, 7.989)
(D) (4.461, 7.452) (E) (5.962, 8.962)

Multiple Choice A vector with magnitude 7 and direction
angle 40° is added to a vector with magnitude 4 and direction
angle 140°. The result is a vector with magnitude

(A)4.684. (B)7435. (C)8.062. (D)9369. (E)l1l.

Multiple Choice The path of a particle moving in the plane is
defined parametrically as a function of time 7 by x = sin 2 and
y = cos 5¢. What is the speed of the particle when r = 27

(A) 1.130 (B) 3.018 (C) {—1.307, 2.720)
(D) (0.757,0.839)  (E) (1.307, 2.720)



Explorations

Two nonzero vectors are said to be orthogonal if they are perpendicu-
lar to each other. The zero vector is considered to be orthogonal to
every vector.

57.

58.

59.

60.

Orthogonal vectors A particle with coordinates (x, y) moves
along a curve in the first quadrant in such a way that dx/dr = —x
and dy/dt = V'1 — ? for every ¢ = 0. Find the acceleration
vector in terms of x and show that it is orthogonal to the corre-
sponding velocity vector.

Orthogonal vectors A particle moves around the unit circle with
position vector {cos ¢, sin 7). Use vectors to show that the particle’s
velocity is always orthogonal to both its position and its acceleration.
Colliding particles The paths of two particles for r = 0 are
given by the position vectors

Ty ={p—3,0—3))
3t 3t >
) ={(——4,—-2)
) ( z 2

(a) Determine the exact time(s) at which the particles collide.
(b) Find the direction of motion of each particle at the time(s) of
collision.
A Satellite in Circular Orbit A satellite of mass m is mov-
ing at a constant speed v around a planet of mass M in a circular
orbit of radius 7y, as measured from the planet’s center of mass.
Determine the satellite’s orbital period T (the time to complete
one full orbit), as follows:
(a) Coordinatize the orbital plane by placing the origin at the
planet’s center of mass, with the satellite on the x-axis at7 = 0
and moving counterclockwise, as in the accompanying figure.

¥y

M

(1)
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Let r(z) be the satellite’s position vector at time 7. Show that
0 = vi/iy and hence that

vt vt
r(r) = <r0cosf, Iy sin 7)
o To
(b) Find the acceleration of the satellite.

(¢) According to Newton’s law of gravitation, the gravitational
force exerted on the satellite by the planet is directed toward the
origin and is given by

F=(_G"7M)L

5 =
o Fg

where G is the universal constant of gravitation. Using Newton’s
second law, F = ma, show that v? = GM/r,.
(d) Show that the orbital period T satisfies vT = 27r,.
(e) From parts (c¢) and (d). deduce that
A
“em’
that is, the square of the period of a satellite in circular orbit is
proportional to the cube of the radius from the orbital center.

Extending the Ideas
Letu = {u, up) and v = {v, v,) be vectors in the plane. The dot
product or inner product u - v is a scalar defined by
ue v =iy, ) (v v = gy s,
61. Using the Dot Product Show that the dot product of two per-
pendicular vectors is zero.
62. An Alternate Formula for Dot Product Letu = {u,, it}
and v = (v, v,) be vectors in the plane, and let w = u — v.
(a) Explain why w can be represented by the
arrow in the accompanying diagram.
(b) Explain why |w|* = Ju]®> + |[v]* — 2|u|[v| cos 6,
where @ is the angle between vectors u and v.

u

(¢) Find the component form of w and use it to
prove that

[ + ¥ = W] = 20,y + ).
(d) Finally. prove that u * v = |u||v| cos 6. where 8 is the angle
between vectors u and v,
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10.3

What you’'ll learn about

* Polar Coordinates

= Polar Curves

= Slopes of Polar Curves

= Areas Enclosed by Polar Curves
* A Small Polar Gallery

...and why

Polar equations enable us to de-
fine some interesting and impor-
tant curves that would be difficult
or impossible to define in the
form y = f(x).

Polar Coordinates

If you graph the two functions y = sin 3x and
vy = cos 5x on the same pair of axes, you will get
two sinusoids. But if you graph the curve defined
parametrically by x = sin 3t and y = cos 5¢, you
will get the figure shown. Parametric graphing opens
up a whole new world of curves that can be defined

using our familiar basic functions.

Another way to enter that world is to use a differ-
ent coordinate system. In polar coordinates we iden-
tify the origin O as the pole and the positive x-axis as

|

the initial ray of angles measured in the usual trigonometric way. We can then identify each
point P in the plane by polar coordinates (r, 8), where r gives the directed distance from O to
P and 6 gives the directed angle from the initial ray to the ray OP.Tn Figure 10.19 we see that
the point P with rectangular (Cartesian) coordinates (2, 2) has polar coordinates (2\/5, 7/4).

v

J Fommmes ?P22)

| » P22, ml4)
2«/5//

— 7

,//}\wm |

]
N

Rectangular coordinates

Polar coordinates

Figure 10.19 Point P has rectangular coordinates (2, 2) and polar coordinates (2\/5, 7i/4).

As you would expect, we can also coordinatize point P with the polar coordinates

(2\/5, 97/4) or (2\@, —Tm/4), since those angles determine the same ray OP. Less obvi-
ously, we can also coordinatize P with polar coordinates (—2\/5, —3m/4), since the directed
distance —2V/2in the —37/4 direction is the same as the directed distance 2V/2 in the 7/4
direction (Figure 10.20). So, although each pair (r, 0) determines a unique point in the plane,
each point in the plane can be coordinatized by an infinite number of polar ordered pairs.

¥

22

Yy

22
’ﬂ 4

X

4
A s

Figure 10.20 The directed negative distance —2V2in the —37/4 direction is the same as the
directed positive distance 2V/2 in the /4 direction. Thus the polar coordinates (—2\/5, —37m/4)

and (2\/5, 7/4) determine the same point.
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EXAMPLE 1 Rectangular and Polar Coordinates
(a) Find rectangular coordinates for the points with given polar coordinates,
: (i) (4, w/2) (i) (=3, 7)) (i) (16, 57/6) (iv) (—V2, —a/4)

(b) Find two different sets of polar coordinates for the points with given rectangular
coordinates.

M (1,0 (=33 (i) 0. -4 ) (1, V3)
' SOLUTION
(a) () (0, 4) (i) (3, 0) (ifi) (—8V/3, 8) (iv) (=1, 1)

(b) A point has infinitely many sets of polar coordinates, so here we list just two typical
examples for each given point.

i (1,0), (1,27 (i) 3V/2, 37/4), (—3V2, —7/4)
(i) (4, —7/2), (4, 37/2) (iv) 2, 7/3), (=2, 47/3)

Now try Exercises 1 and 3.

EXAMPLE 2 Graphing with Polar Coordinates
| Graph all points in the plane that satisfy the given polar equation
(a)r=2 (b)y r=-2 (c) 6= 7/6
SOLUTION

First, note that we do not label our axes r and #. We are graphing polar equations in the
usual xy-plane, not renaming our rectangular variables!

(a) The set of all points with directed distance 2 units from the pole is a circle of radius
2 centered at the origin (Figure 10.21a).

(b) The set of all points with directed distance —2 units from the pole is also a circle of
radius 2 centered at the origin (Figure 10.21b).

(¢) The set of all points of positive or negative directed distance from the pole in the 7/6
direction is a line through the origin with slope tan(7/6) (Figure 10.21c¢).

Now try Exercise 7.

(a) (b) (¢)

Figure 10.21 Polar graphs of (a) r = 2, (b) » = —2, and (c) 8 = /6. (Example 2)

Polar Curves

The curves in Example 2 are a start, but we would not introduce a new coordinate system just to
graph circles and lines; there are far more interesting polar curves to study. In the past it was hard
work to produce reasonable polar graphs by hand, but today, thanks to graphing technology, it is
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just a matter of finding the right window and pushing the right buttons. Our intent in this sec-
tion is to use the technology to produce the graphs and then concentrate on how calculus can
be used to give us further information.

EXAMPLE 3 Polar Graphing with Technology
Find an appropriate graphing window and produce a graph of the polar curve.
(a) r = sin 60 (byr=1-—2cos @ (c)r=4sin @
SOLUTION
! For all these graphs, set your calculator to POLAR mode.

(a) First we find the window. Notice that |r| = [sin 66| = 1 for all 8, so points on the graph
are all within [ unit from the pole. We want a window at least as large as [— 1, 1] by [—1, 1],
but we choose the window [—1.5, 1.5] by [— 1, 1] in order to keep the aspect ratio close to
the screen dimensions, which have a ratio of 3:2. We choose a #-range of 0 = 6 =27 to
get a full rotation around the graph, after which we know that sin 66 will repeat the same
graph periodically. Choose @ step = 0.05. The result is shown in Figure 10.22a.

(b) In this graph we notice that || = [1—2 cos ] = 3, so we choose [—3, 3] for our
y-range and, to get the right aspect ratio, [—4.5, 4.5] for our x-range. Due to the cosine’s
period, 0 = 6 = 27 again suffices for our A-range. The graph is shown in Figure 10.22b.

(¢) Since |r| = |4 sin 8] = 4, we choose [ —4, 4] for our y-range and [ —6, 6] for our x-range.
Due to the sine’s period, 0 = 6 = 277 again suffices for our ¢-range. The graph is shown in
Figure 10.22¢. Now try Exercise 13.

—~
S

[-1.5, 1.5] by [-1, 1] [-4.5,4.5] by [-3, 3] [-6, 6] by [-4, 4]
00 <27 0<6<27 0<6 <27
(a) (b) (c)

Figure 10.22 The graphs of the three polar curves in Example 3. The curves are (a) a [2-petaled rose, (b) a limagon, and
(¢) a circle.

A Rose is a Rose With a little experimentation, it is possible to improve on the “safe” windows we chose in

The graph in Figure 10.22a is called a
12-petaled rose, because it looks like a
flower and some flowers are roses. The

Example 3 (at least in parts (b) and (c)), but it is always a good idea to keep a 3:2 ratio of
the x-range to the y-range so that shapes do not become distorted. Also, an astute observer
may have noticed that the graph in part (c) was traversed rwice as 6 went from () to 27, so

graph in Figure 10.22b is called a a range of 0 = 6 = 7 would have sufficed to produce the entire graph. From 0 to 7, the
limacon (LEE-ma-sohn) from an old circle is swept out by positive r values; then from 77 to 2, the same circle is swept out by
French word for snail. We will have negative r values.

more names for you at the end of the Although the graph in Figure 10.22¢ certainly looks like a circle, how can we tell for sure
section.

that it really is7 One way is to convert the polar equation to a Cartesian equation and verify
that it is the equation of a circle. Trigonometry gives us a simple way to convert polar equa-
tions to rectangular equations and vice versa.
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Polar-Rectangular Conversion Formulas

x=rcosf P = kit yE

, y
rsin 6 tan § = —
X

=
Il

EXAMPLE 4 Converting Polar to Rectangular

Use the polar-rectangular conversion formulas to show that the polar graph of » = 4 sin ¢
is a circle.

SOLUTION

To facilitate the substitutions, multiply both sides of the original equation by r. (This could
introduce extraneous solutions with » = 0, but the pole is the only such point, and we notice
that it is already on the graph.)

r=4sin @
> =4rsin @ Multiply by r
P4y =dy Polar-rectangular conversion
¥+yr—4y=0
L+y—dy+4=4 Completing the square
B2+ (y—2P =2 Circle in standard form

Sure enough, the graph is a circle centered at (0, 2) with radius 2.  Now try Exercise 25.

The polar-rectangular conversion formulas also reveal the calculator’s secret to polar graphing:
It is really just parametric graphing with 8 as the parameter.

Parametric Equations of Polar Curves

The polar graph of r = £(6) is the curve defined parametrically by:
x=rcos = f(6) cos 8

y=rsin §=f(6)sin

Graphing Polar Curves Parametrically

Switch your grapher to parametric mode and enter the equations
X = sin (67) cos t
y = sin (61) sin t.

1. Set an appropriate window and see if you can reproduce the polar graph in
Figure 10.22a.

2. Then produce the graphs in Figures 10.22b and 10.22¢ in the same way.
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o

[-3,3] by [-2, 2]
00w
Figure 10.23 The 3-petaled rose curve

r= 2 sin 36. Example 5 shows how to find
the tangent line to the curve at 8 = 7/6.

Slopes of Polar Curves

Since polar curves are drawn in the xy-plane, the slope of a polar curve is still the slope of the
tangent line, which is dy/dx. The polar-rectangular conversion formulas enable us to write x
and y as functions of 6, so we can find dy/dx as we did with parametrically defined functions:

dy _ dylds

&
Q.
=

&
D

EXAMPLE 5 Finding Slope of a Polar Curve

Find the slope of the rose curve r = 2 sin 36 at the point where 8 = 7/6 and use it to find
| the equation of the tangent line (Figure 10.23).

| SOLUTION
The slope is

5 d%(z sin 36 sinf)

dx

_ dy/dd
=2 dx/do

=% %(2 sin 36 cosf)

T
6

This expression can be computed by hand, but it is an excellent candidate for your calcula-
tor’s numerical derivative functionality (Section 3.2). NDERITV quickly gives an answer of
—1.732050808, which you might recognize as V3.

When 6 = 7/6,

x = 2 sin(w/2) cos(m/6) = V3 and v = 2 sin(7/2) sin(7/6) = 1.

So the tangent line has equation y — 1 = A3 —V3). Now try Exercise 39.

Areas Enclosed by Polar Curves

We would like to be able to use numerical integration to find areas enclosed by polar curves
just as we did with curves defined by their rectangular coordinates. Converting the equations
to rectangular coordinates is not a reasonable option for most polar curves, so we would like to
have a formula involving small changes in 8 rather than small changes in x. While a small
change Ax produces a thin rectangular strip of area, a small change A@ produces a thin circular
sector of area (Figure 10.24).

¥ ¥

/\/

Ax

Figure 10.24 A small change in x produces a rectangular strip of area, while a small change
in @ produces a thin sector of area.



r=2{14+cos 0
P(r, )

(%]
]
A=
(}e]
3

Figlﬂ’e 10.26 The cardioid in
Example 6.
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Recall from geometry that the area of a sector of a circle is %1'28, where r is the radius and 6 is
the central angle measured in radians. If we replace 6 by the differential 46, we get the area
differential dA = %rzdﬂ (Figure 10.25), which is exactly the quantity that we need to inte-

grate to get an area in polar coordinates.

\ Pl ©)

Figure 10.25 The area differential dA. @

Area in Polar Coordinates

The area of the region between the origin and the curve r = f(6) fora = 6= is

B Tl B | . ¢
A=f Ef'“de—f 5(f(6)) A,

o (04

EXAMPLE 6 Finding Area
Find the area of the region in the plane enclosed by the cardioid r = 2(1 + cos 6).

SOLUTION
We graph the cardioid (Figure 10.26) and determine that the radius OP sweeps out the
region exactly once as @ runs from 0 to 2.

Solve Analytically The area is therefore

9=211'1 21r1
D, H = o 4 < 2
J 5" do L 5 4(1 + cos 6)* d6

0=0

2(1 + 2 cos 0 + cos? @) d6

+
2+4cos€+2[—?sﬂ)d6

(3+4cos O+ cos20)do

J’ZW

0
JEZW
0
J*Z'JT
O.

" 27

sin 29]

5 =67r—0=06m

30 + 4sin 0 +

1]

Support Numerically NINT (2(1 + cos 6), 0,0, 27) = 18.84955592, which
agrees with 67 to eight decimal places.
Now try Exercise 43.
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¥

r=2cosf + 1
_ gz
e 3
=10
/
_lam
4= 3

Figure 10.27 The limagon in
Example 7.

0

Figure 10.28 The area of the shaded
region is calculated by subtracting the area
of the region between r; and the origin
from the area of the region between r, and
the origin.

Y Upper limit
6 = /2

=1

ry=1-cosd

)

Lower limit
0 =-7/2

Figure 10.29 The region and limits of
integration in Example 8.

X
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EXAMPLE 7 Finding Area
Find the area inside the smaller loop of the limagon r = 2 cos 6 + 1.
SOLUTION

After watching the grapher generate the curve over the interval 0 < 8 < 27 (Figure
10.27), we see that the smaller loop is traced by the point (r, ) as 6 increases from
0 =2m/3 to 0= 47/3 (the values for which r = 2 cos # + 1= 0). The area we seek is

dm/3 4w/3
Loage-1 2
j 57 d6—2f (2cos 6+ 1)*d6.

2m/3
Solve Numerically

1

ENINT (2cos O+ 1)%, 0, 27/3, 47/3) = (.544.

Now try Exercise 47.

To find the area of a region like the one in Figure 10.28, which lies between two polar curves
rp = ry(#) and r, = r,(f) from § = « to @ = B, we subtract the integral of (1/2)r,* from the
integral of (1/2)r,?. This leads to the following formula.

Area Between Polar Curves

The area of the region between r,(0) and r,(0) for « = 6 = B s

gy 31 2
et o e D, — el
fa 2r2 de fa Zr, do fa 2

A

{r? =7 2do.

EXAMPLE 8 Finding Area Between Curves
Find the area of the region that lies inside the circle » = 1 and outside the cardioid
r=1— cos 6.

SOLUTION

The region is shown in Figure 10.29. The outer curve is r, = 1, the inner curve is

rp =1 — cos 6, and 6 runs from — /2 to /2. Using the formula for the area between
polar curves, the area is

/2
1
A =J E(rzz—rlz) do
—m/2
/2 1
= ZJ 5(}‘22 — ?‘12) do Symmetry
0
/2
—j (1 —(1 —2cos @+ cos?0))do
0
/2
= f (2 cos 8 — cos? 6) d6 = 1.215. Using NINT
0

In case you are interested, the exact value is 2 — 7/4.

Now try Exercise 53.

o
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A SMALL POLAR GALLERY

Here are a few of the more common polar graphs and the 6-intervals that can be wsed to
produce them.

CIRCLES

N X ,\.
W

r = constant r=asinf = qacos B
O0=0=27 O=60=7 O=0=m

ROSE CURVES

r = asin nd, n odd r = @ sin nf, n even
0=o0=w 0=6=2mw
n petals 2n petals
y-axis symmetry y-axis symmetry and

X-axis symmetry

X X
= a cos nf, n odd r = acos nd, n even
O0=0=w 0=0=2n
n petals 2n petals
X-axis symmetry y-axis symmetry and

X-axis symmetry
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LIMACON CURVES

r=axtbsinfBorr=a*bcos@witha>0andbh >0

(r = a * b sin 6 has y-axis symmetry; r = a * b cos 6 has x-axis symmetry.)

(&)

3

B 1 & _ 1
b b
0=6=27w 0=0=27
Limagon with loop Cardioid
) ¥
{2 p LEY
b b
0=0=7 0=6=27
Dimpled limagon Convex limagon
LEMNISCATE CURVES
i y

LD x
C

> = g2 sin 26 = g cos 26
O0=0=x O0=0=mw
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SPIRAL OF ARCHIMEDES

=

2
S

r=0>0

Quick Review 10.3 (For help, go to Sections 10.1 and 10.2.)

1. Find the component form of a vector with magnitude 4 and
direction angle 30°.

2. Find the area of a 30° sector of a circle of radius 6.

3. Find the area of a sector of a circle of radius 8 that has a central
angle of 7/8 radians.

4. Find the rectangular equation of a circle of radius 5 centered at
the origin.

5. Explain how to use your calculator in function mode to graph
the curve x2 + 3y? = 4,

Section 10.3 Exercises

Exercises 6-10 refer to the parametrized curve
x=23cost, y=5sint, 0 =r=2m
6. Find dy/dx.
7. Find the slope of the curve at 1 = 2.
8. Find the points on the curve where the slope is zero.
9. Find the points on the curve where the slope is undefined.

10. Find the length of the curve from 7 = 0tot = 7.

In Exercises 1 and 2, plot each point with the given polar coordinates
and find the corresponding rectangular coordinates.

1. (a) (V2, m/4) (b) (1,0)

(© (0, /2) (d) (—=V72, 7/4)
2. (a) (—3,57/6) (b) (5, tan1(4/3))
(©) (-1, 77) d) (2V3,27/3)

In Exercises 3 and 4, plot each point with the given rectangular coor-
dinates and find two sets of corresponding polar coordinates.

3. (-1,1) (b) (1, =V3)
(€) (0,3) @ (~1,0)

4. (a) (-V3, -1 (b) (3,4)
(©) (0, -2) (@) (2,0)

In Exercises 5-10, graph the set of points whose polar coordinates
satisfy the given equation.

5.r=3 6. r= -3
7.2 =4 8. 0= —m/4
9. |6l = /6 10. ¥ + 8 = 6r

In Exercises 11-20, find an appropriate window and use a graphing
calculator to produce the polar curve. Then sketch the complete curve
and identify the type of curve by name.

11. r=1+cos 0 12. r=2—2cos 0
13. r=2cos 36 14. r = —3sin 20
15. r=1—2sin @ 16. r =3/2 + cos 0
17. r* =4 cos 26 18. 2 = sin 28
19. r=4sin @ 20. r=3cos 0

In Exercises 21-30, replace the polar equation by an equivalent Cartesian
(rectangular) equation. Then identify or describe the graph.

21. r=4csc 22. r= —3secf
23, rcos 6 + rsin =1 24, 2=
25 ’.:_5—_ 26. r2sin26=2

sin @ — 2 cos
27. cos® 0 =sin® @
29, r=28sin @
30. r=2cos 8+ 2sinf

28. r2 = —4rcos 0
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In Exercises 31-38, find an appropriate window and use a graphing
calculator to produce the polar curve. Then sketch the complete curve
and identify the type of curve by name. (Nore: You won’t find these in
the Polar Gallery.)

31. r =secHtand 32. r = —cscl cotd
Bor=—— 34"":1—711119
3s. r=ﬁ&g—8 36. r:ﬁ
3= 38.r=m

In Exercises 39-42, find the slope of the curve at each indicated point.
39.r=-1+sin6, 0=0,7

40. r=cos26, 0=0, x7/2, &

41. r=2—3sin @

(2, )

42. r=3(1 — cos

(45 &

(%)
X
G¥

In Exercises 43-56, find the area of the region described.
43. inside the convex limagon r = 4 + 2 cos 6

44. inside the cardioid r = 2 + 2 sinf

45. inside one petal of the four-petaled rose r = cos 26
46. inside the eight-petaled rose r = 2 sin 40

47. inside one loop of the lemniscate r* = 4 cos 20

48. inside the six-petaled rose 2 = 2 sin 36

49. inside the dimpled limagon r = 3 — 2 cos ¢

50. inside the inner loop of the limagon » = 2 sin 6 — 1
51. shared by the circles r = 2 cos @ and r = 2 sin ¢

52
53. shared by the circle » = 2 and the cardioid r = 2(1 — cos )
54. shared by the cardioids r = 2(1 + cos @) and r = 2(1 — cos )

55. inside the circle r = 2 and outside the cardioid r = 2(1 — sin 0)

shared by the circles r = 1 and r = 2 sin 0

56. inside the four-petaled rose r = 4 cos 26 and outside the circle
r=72

57. Sketch the polar curves r = 3 cos @ and » = 1 + cos f and find
the area that lies inside the circle and outside the cardioid.

58. Sketch the polar curves » = 2 and » = 2(1 — sin #) and find the
area that lies inside the circle and outside the cardioid.

59. Sketch the polar curve r = 2 sin 36. Find the area enclosed by
the curve and find the slope of the curve at the point where
6= m/4.

60. The accompanying figure shows the parts of the graphs of the line
x= %y and the curve x = V| + y? that lie in the first quadrant.
Region R is enclosed by the line, the curve, and the x-axis.

y

(a) Set up and evaluate an integral expression with respect to y

that gives the area of R.

(b) Show that the curve x = V1 + 3% can be described in polar
1

coordinates by 12 = ——————
y cos?  — sin? @

(¢) Use the polar equation in part (b) to set up an integral
expression with respect to ¢ that gives the area of R.

Standardized Test Questions

ﬁ ' You may use a graphing calculator to solve the following
problems.

61. True or False There is exactly one point in the plane with
polar coordinates (2, 2). Justify your answer.

62. True or False The total area enclosed by the 3-petaled rose
r=sin 36 is 0217% sin? 30d86. Justify your answer.

63. Multiple Choice The area of the region enclosed by the polar
graph of r = V3 + cos 0 is given by which integral?

W) V3 tcos0d0 B[] V3 +cos0do

72 T
()2 fn (3 + cost) db ) [ (3 + cos6) do

/2

(E) . V3 + cos B do

64. Multiple Choice The area enclosed by one petal of the
3-petaled rose r = 4 cos(36) is given by which integral?

w3 /6

(A) 16, cos(30) o (B)8) _ cos(36) df
3 /6
el 2
() SJLH}LO.S (36) do (D) lﬁf_ﬂmcos (36) do

76
(E) 8_[7#/6 cos?(36) df



65. Multiple Choice Ifa # 0 and 8 # 0, all of the following
must necessarily represent the same point in polar coordinates
except which ordered pair?

(A) (a, 0) B) (—a, —0)
D) (~a,0+m) (E)(a 6—2m)

66. Multiple Choice Which of the following gives the slope of
the polar curve r = f(6) graphed in the xy-plane?

dx dy/do

o D

do ) dx/de

(C)(—a, 86— m)

dy dr
dx do

dr dy
A)— B) = E
(A) 26 (B) T (© (E)
Explorations
67. Rotating Curves Let r (6) = 3(1 — cos 8) and
ra(6) = ri(6 — o).
(a) Graph r, for « = /6, w/4, /3, and /2 and compare
with the graph of r,.

(b) Graph r, for @ = —m/6, —w/4, —7/3, and —7/2 and
compare with the graph of r,.

(¢) Based on your observations in parts (a) and (b), describe the

relationship between the graphs of r, = f(6) and r, = f(6 — ).

2

1 +kcos O

(a) Graph r in a square viewing window for k = 0.1, 0.3, 0.5,
0.7, and 0.9. Describe the graphs.

(b) Based on your observations in part (a), conjecture what
happens to the graphs for 0 < k<1 and k—=0".
N

1 +kcos 8’

68, Let r=

69. Let r=

(a) Graph r in a square viewing window for & =1.1, 1.3, 1.5, 1.7,

and 1.9. Describe the graphs.

(b) Based on your observations in part (a), conjecture what
happens to the graphs for k> 1 and k—1%.
k

70. Let r = TCOSB
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() Graph r in a square viewing window for k =1,3,57 ,and 9.
Describe the graphs.

(b) Based on your observations in part (a), conjecture what
happens to the graphs for k>0 and k—07.

Extending the Ideas

71.

72.

73.

74.

Quick Quiz for AP* Preparation: Sections 10.1-10.3

Distance Formula Show that the distance between W o points
(r). 6,) and (r,, 6,) in polar coordinates is

d="Vr2+r?—2rrycos (8 — 6,).

Average Value If f is continuous, the average value Of the
polar coordinate r over the curve » = f(f), a = 8=p, with
respect to 6 is

1
B—«
Use this formula to find the average value of r with respect to ¢
over the following curves (a > 0).

r(ll’ =

B
J‘ F(8) do.
e

(a) the cardioid r = a(l — cos )

(b) the circle r = a

(c) the circle r=acos 6, —7/2= 0= /2

Length of a Polar Curve The parametric form of the arc
length formula (Section 10.1) gives the length of a polar curve as

2 G
&y (D

Assuming that the necessary derivatives are continuous, show
that the substitutions x = r cos fand y = r sinf transform this

expression into
B
dr\?
L= J’ 24+ (= d8b.

Length of a Cardioid Use the formula in Exercise 73 to find
the length of the cardioid r = 1 + cos 6.

TR

'\, You may use a graphing calculator to solve the following
problems.

1. Multiple Choice Which of the following is equal to the area

of the region inside the polar curve » = 2 cos 6 and outside the
polar curve r = cos 0?7

/2 T
(A) 3_[; cos?6 df (B) 3], cos?0.dp

3 /2 : /2
(C)EJ-0 cos=0 do (D) BJ:) cosf df

(E) 3 cosbdf

2. Multiple Choice For what values of t does the curve given by

the parametric equations x = # — 2 — L and y = ¢* + 2/> — 8¢
have a vertical tangent?

(A) 0 only
(C) 0 and 2/3 only
(E) No value

(B) 1 only
(D)0, 2/3, and 1

3.

Multiple Choice The length of the path described by the
parametric equations x = 2 and y = tfrom r = 0 to t = 4 is
given by which integral?

W [Varria @2 NErLa © [, V2Rt
O [ VaE T 1a ®2nf, Var+ 1d

. Free Response A polar curve is defined by the equation

r=0+sin20for0=0=m.

(a) Find the area bounded by the curve and the x-axis.

(b) Find the angle @ that corresponds to the point on the curve
where x = —2.

2
(c) For % <g< ”—;, % is negative. How can this be seen
from the graph?
(d) At what angle 6 in the interval 0 = 6 = 7r/2 is the curve
farthest away from the origin? Justify your answer.
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Chapter 10 Key Terms

Absolute value of a vector (p. 538)
Acceleration vector (p. 542)
Archimedes spiral (p. 557)

Arc length of a parametrized curve (p. 533)
Arc length of a polar curve (p. 553)
Area between polar curves (p. 554)
Area differential (p. 553)

Area in polar coordinates (p. 553)
Arrow (p. 538)

Cardioid (p. 556)

Cartesian equation of a curve (p. 550)
Component form of a vector (p. 539)
Components of a vector (p. 538)
Convex limagon (p. 556)

Cycloid (p. 533)

Dimpled limagon (p. 556)

Directed distance (p. 548)

Directed line segment (p. 538)
Direction angle of a vector (p. 539)
Direction of motion (p. 542)
Direction vector (p. 538)
Displacement (p. 543)

Distance traveled (p. 544)

Dot product of vectors (p. 547)
Equivalent arrows (p. 539)

Head Minus Tail Rule (p. 539)
Huygens’s clock (p. 534)

Initial point of an arrow (p. 539)
Initial ray of angle of direction (p. 548)
Lemniscate (p. 556)

Limacon (p. 556)

Limagon with inner loop (p. 556)
Magnitude of a vector (p. 538)
Opposite of a vector (p. 340)
Orthogonal vectors (p. 547)

Parallelogram representation of vector
addition (p. 540)

Parametric equations of a polar
curve (p. 551)

Parametric formula for dy/dx (p. 532)
Parametric formula for ¢ y/ex® (p. 532)
Path of a particle (p. 542)
Polar coordinates (p. 548)
Polar equation of a curve (p. 549)
Polar graphing (p. 549)
Polar—rectangular conversion

formulas (p. 551)

Pole (p. 548)
Position of a particle (p. 544)
Position vector (p. 338)
Properties of vectors (p. 541)
Rectangular coordinates (p. 548)
Resultant vector (p. 540)
Rose curve (p. 555)
Scalar (p. 539)
Scalar multiple of a vector (p. 540)
Speed (p. 542)
Standard representation of

a vector (p. 538)
Sum of vectors (p. 540)

Tail-to-head representation of
vector addition (p. 540)

Terminal point of an arrow (p. 539)
Unit vector (p. 540)

Vector (p. 538)

Vector addition (p. 539)

Velocity vector (p. 542)

Zero vector (p. 538)

Chapter 10 Review Exercises

In Exercises 1-4, letu = (=3, 4) and v = (2, —5). Find
(a) the component form of the vector and (b) its magnitude.

1. 3u — 4v 2.utv 3. —2u
In Exercises 5-8, find the component form of the vector.

5. the vector obtained by rotating {0, 1) through an angle

of 277/3 radians

6. the unit vector that makes an angle of /6 radian with the

positive x-axis

4. 5v

9. x=(1/2) tan 1,
10. x =1+ 1/13

y=(1/2)sect; t=u/3
y=1-=3/t; t=2

In Exercises 11-14, find the points at which the tangent

13. x = —cost, y=cos’t

to the curve is (a) horizontal; (b) vertical.
11. x = (1/2) tan 1,
12, x = —2 cos t,

y=(1/2) sect
y=2sint

14. x =4 cost, y=9sint

7. the vector 2 units long in the direction 4i — j
8. the vector 5 units long in the direction opposite to the direction
of (3/5, 4/5)
In Exercises 9 and 10, (a) find an equation for the tangent to the
curve at the point corresponding to the given value of ¢, and
(b) find the value of d>y/dx? at this point.

In Bxercises 15-20, find an appropriate window and graph the polar
curve on a graphing calculator. Then sketch the curve on paper and
identify the type of curve.
15. r=1—sin @

17. r =cos 20

19. 72 =sin 260

16. r =2 + cos 0
18. rcos 0 =1
20. # = —sin @



In Exercises 21 and 22, find the slope of the tangent lines at the point
where 8 = 7/3.
21. r = cos 26 22, r =2+ cos 260

In Exercises 23 and 24, find equations for the horizontal and vertical
tangent lines to the curves.

23.r=1—cos(6/2), 0=6=4dxw

2. r=2(1 —sin @), 0=0=2mw

25. Find equations for the lines that are tangent to the tips of the
petals of the four-petaled rose r = sin 26.

26. Find equations for the lines that are tangent to the cardioid
=1+ sin 6 at the points where it crosses the x-axis.

In Exercises 27-30, replace the polar equation by an equivalent

Cartesian equation. Then identify or describe the graph.

28, r=3cos f

30. rcos (8 + 7/3) = 2V3

27.rcos 6 =rsin @
29. r = 4 tan 0 sec @

In Exercises 31-34, replace the Cartesian equation by an equivalent
polar equation.

3.2+ y2+5y=0 32, 24y =2y=0

3Bl 42 =16 M, (x+22+(y—-5r=16

In Exercises 35-38, find the area of the region described.

35. enclosed by the limacon r =2 — cos ¢

36. enclosed by one petal of the three-petaled rose r = sin 30

37. inside the “figure eight” r =1 + cos 26 and outside the circle
r=1

38. inside the cardioid » = 2(1 + sin #) and outside the
circle r = 2sin 8

In Exercises 39 and 40, r(r) is the position vector of a particle moving
in the plane at time 1. Find (a) the velocity and acceleration vectors,
and (b) the speed at the given value of .

39. r(1) = (4 cos 1, V2 sin D, t=m/4
40. r(n) = (\/§ sec f, V3 tan H,1=10

41. The position of a particle in the plane at time # is

r= _\/ljﬁ —I\FI‘?IJ Find the particle’s maximum speed.

42. Writing to Learning Suppose that r{1) = (e’ cos t, ¢' sin 7).
Show that the angle between r and the acceleration vector a
never changes. What is the angle?

In Exercises 43-46, find the position vector.
43. v(f) = {—sin t, cos #} and r(0) = (0, 1)

44, v(r) = (ﬁ ﬁ) and r(0) = (1, 1)

45, a(f) = (0, 2y and v(0) = {0, 0y and r(0) = (1, O)

46. a() = (=2, —2)and v(1) = (4, 0y and r(1) = (3, 3)
47. Particle Motion A particle moves in the plane in such a

manner that its coordinates at time ¢ are

T T
x=3cos—1, y=35sin—Ht
4 2 4

(a) Find the length of the velocity vector at ¢ = 3.
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(b) Find the x- and y-components of the acceleration of
the particle at t = 3.

(¢) Find a single equation in x and y for the path of the particle.

48. Particle Motion Attime:, 0 =t=4, the position of
a particle moving along a path in the plane is given by
the parametric equations

x=c¢e'cost, y=e'sint.
(a) Find the slope of the path of the particle at time ¢ = 7.
(b) Find the speed of the particle when = 3.

(¢) Find the distance traveled by the particle along the path from
t=0to r=3.

49, Particle Motion The position of a particle at any time
t =0 is given by

2
x(=r=2, yi)= gr-‘.
(a) Find the magnitude of the velocity vector at 1 = 4.

(b) Find the total distance traveled by the particle from
t=01to t=4
(¢) Find dy/dx as a function of x.

50. Navigation An airplane, flying in the direction 80° east of
north at 540 mph in still air, encounters a 55-mph tail wind
acting in the direction 100° east of north. The airplane holds its
compass heading but, because of the wind, acquires a different
eround speed and direction, What are they?

AP* Examination Preparation

ﬂ . You may use a graphing calculator to solve the following
problems.

51. A particle moves along the graph of y = cos x so that its
x-component of acceleration is always 2. At time ¢ = 0, the
particle is at the point (7, —1) and the velocity of the particle is
(0, 0).

(a) Find the position vector of the particle.

(b) Find the speed of the particle when it is at the point (4, cos 4).
52. Two particles move in the xy-plane. For time ¢ = 0, the position

of particle A is given by x = ¢ — 2 and y = (1 — 2)?, and the

position of particle B is given by x = %f —4andy = %r =2

(a) Find the velocity vector for each particle at time ¢ = 3.

(b) Find the distance traveled by particle A from ¢ = Oto ¢ = 3.

(c) Determine the exact time when the particles collide.

53. A region R in the xy-plane is bounded below by the x-axis
and above by the polar curve defined by r =

0=0=m.

— for
1+ sin @

(a) Find the area of R by evaluating an integral in polar
coordinates.

(b) The curve resembles an arch of the parabola 8y = 16 — x%
Convert the polar equation to rectangular coordinates and prove
that the curves are the same.

(¢) Set up an integral in rectangular coordinates that gives the
area of R.



