Quick Reference 0 2π \overline{o} 2π sin θ $\cos \theta$ IJ l $\cot \theta$ tan θ Contraction of the local division of the loc $\csc \theta$ sec 0

 $y = \tan^{-1}(x)$

Development of Inverse Trigonometric Function Derivatives

Development of Transcendental Function Derivatives

Practice Problems

Practice Problems Continued

LESSON 1 HW Section 3.8: #1 – 21 odd, 35-40 M.C. Section 3.9: #5-25 odd, 31, 49

(LEAVE THE ANSWERS UNSIMPLIFIED)	
SECTION 3.8	SECTION 3.9
1. $y = \cos^{-1}(x^2)$ Find $\frac{dy}{dx}$	5. $y = e^{2x/3}$ Find $\frac{dy}{dx}$
3. $y = \sin^{-1} \sqrt{2t}$ Find $\frac{dy}{dt}$ 5. $y = \sin^{-1} \frac{3}{t^2}$ Find $\frac{dy}{dt}$	7. $y = e^2 x - e^x$ Find $\frac{dy}{dx}$
7. $y = x \sin^{-1} x + \sqrt{1 - x^2}$ Find $\frac{dy}{dx}$ 9. $x = \sin^{-1} \left(\frac{t}{-1}\right)$ Find $x'(3)$	9. $y = e^{\sqrt{x}}$ Find $\frac{dy}{dx}$
(4) 11. $x = \tan^{-1} t$ Find $x'(2)$	11. $y = 8^x$ Find $\frac{dy}{dx}$
13. $y = \sec^{-1}(2s+1)$ Find $\frac{dy}{ds}$	13. $y = 3^{\csc x}$ Find $\frac{dy}{dx}$
15. $y = \csc^{-1}(x^2 + 1), x > 0$ Find $\frac{dy}{dx}$ 17. $y = \sec^{-1}\frac{1}{t}, 0 < t < 1$ Find $\frac{dy}{t}$	15. $y = \ln(x^2)$ Find $\frac{dy}{dx}$
19. $y = \cot^{-1}\sqrt{t-1}$ Find $\frac{dy}{dt}$	17. $y = \ln\left(\frac{1}{x}\right)$ Find $\frac{dy}{dx}$
21. $y = \tan^{-1} \sqrt{x^2 - 1} + \csc^{-1} x$, $x > 1$	19. $y = \ln(\ln x)$ Find $\frac{dy}{dx}$
Find $\frac{dy}{dx}$	21. $y = \log_4 x^2$ Find $\frac{dy}{dx}$
	23. $y = \log_2\left(\frac{1}{x}\right)$ Find $\frac{dy}{dx}$
	25. $y = \ln 2 \cdot \log_2 x$ Find $\frac{dy}{dx}$

3.9 #31

A line with slope *m* passes through the origin and is tangent to $y = \ln(2x)$.

What is the value of *m*?

3.9 #49

Find an equation for the line tangent to the graph of $y = e^x$ and goes through the origin.

3.8 #35-40 Multiple Choice

- **35. True or False** The domain of $y = \sin^{-1}x$ is $-1 \le x \le 1$. Justify your answer.
- **36. True or False** The domain of $y = \tan^{-1}x$ is $-1 \le x \le 1$. Justify your answer.

37. Multiple Choice Which of the following is $\frac{d}{dx}\sin^{-1}\left(\frac{x}{2}\right)$?

(A)
$$-\frac{2}{\sqrt{4-x^2}}$$
 (B) $-\frac{1}{\sqrt{4-x^2}}$ (C) $\frac{2}{4+x^2}$
(D) $\frac{2}{\sqrt{4-x^2}}$ (E) $\frac{1}{\sqrt{4-x^2}}$

38. Multiple Choice Which of the following is $\frac{d}{dx} \tan^{-1}(3x)$?

(A)
$$-\frac{3}{1+9x^2}$$
 (B) $-\frac{1}{1+9x^2}$ (C) $\frac{1}{1+9x^2}$

(D)
$$\frac{3}{1+9x^2}$$
 (E) $\frac{3}{\sqrt{1-9x^2}}$

39. Multiple Choice Which of the following is $\frac{d}{dx} \sec^{-1}(x^2)$?

(A)
$$\frac{2}{x\sqrt{x^4 - 1}}$$
 (B) $\frac{2}{x\sqrt{x^2 - 1}}$ (C) $\frac{2}{x\sqrt{1 - x^4}}$
(D) $\frac{2}{x\sqrt{1 - x^2}}$ (E) $\frac{2x}{\sqrt{1 - x^4}}$

- **40.** Multiple Choice Which of the following is the slope of the tangent line to $y = \tan^{-1}(2x)$ at x = 1?
- (A) -2/5 (B) 1/5 (C) 2/5 (D) 5/2 (E) 5

LESSON 1 HW EXTENSION

1. IN Section 3.8 #5
$$\frac{dy}{dt} = \frac{1}{\sqrt{1 - \left(\frac{3}{t^2}\right)^2}} \cdot -6t^{-3}$$
 This answer simplifies to $\frac{-6}{t\sqrt{t^4 - 9}}$.

SHOW HOW.

2. IN Section 3.8 #17
$$\frac{dy}{dt} = \frac{1}{\left|\frac{1}{t}\right| \sqrt{\left(\frac{1}{t}\right)^2 - 1}} \cdot \frac{-1}{t^2}$$
 This answer simplifies to $\frac{-1}{\sqrt{1 - t^2}}$.

SHOW HOW.

3. IN Section 3.8 #37
$$\frac{dy}{dx} = \frac{1}{\sqrt{1 - \left(\frac{x}{2}\right)^2}} \cdot \frac{1}{2}$$
 This answer simplifies to $\frac{1}{\sqrt{4 - x^2}}$.

SHOW HOW.

BC.Q104.NOTES: Chapter 3.8, 3.9 – Lesson 2

PART I. Derivatives with Log Properties and Logarithmic Differentiation

First Using Log Properties to Find a Derivative

Logarithmic Differentiation

THM: If the domain of a function f is an interval on which $f'(x) > 0 \quad \forall x$ or on which $f'(x) < 0 \quad \forall x$, then the inverse of f is also a function.

f'(x) > 0 implies that *f* is increasing. f'(x) < 0 implies that *f* is decreasing.

FORMULA:

Example: Consider $f(x) = x^5 + x + 1$ on $(-\infty, \infty)$.

1. Prove that the inverse of f(x) is also a function?

2. Find the slope of the inverse function f^{-1} at x = 3.

EXAMPLE 2: $f(x) = 2x^3 + 5x + 3$ is a one-to-one function.

EXAMPLE 3: $f(x) = 5x^3 + x - 7$ is a one-to-one function.

EXAMPLE 4: $f(x) = 2x^5 + x^3 + 1$ is a one-to-one function. Let $g(x) = f^{-1}(x)$

Formula Development

Task: Construct a relationship between the slope of a function f at (a, b) and the slope of the inverse function at (b, a).

LESSON 2 HW

Section 3.9 #43, 45, 46, and 47 + MC 2 and 3 Section 3.8 #28, 29 + extra problem 3.9 #43: $y = (\sin x)^x$, $0 < x < \pi/2$. Find $\frac{dy}{dx}$ using logarithmic differentiation. 3.9 #45: $y = \sqrt[5]{\frac{(x-3)^4 (x^2+1)}{(2x+5)^3}}$. Find $\frac{dy}{dx}$ using logarithmic differentiation. 3.9 #45: $y = \frac{x\sqrt{x^2+1}}{(x+1)^{2/3}}$. Find $\frac{dy}{dx}$ using logarithmic differentiation. 3.9 #47: $y = x^{\ln x}$. Find $\frac{dy}{dx}$ using logarithmic differentiation. 2. Multiple Choice Which of the following gives dy/dxif $y = \cos^3(3x-2)$? (A) $-9\cos^2(3x-2)\sin(3x-2)$ (B) $-3\cos^2(3x-2)\sin(3x-2)$ (C) $9\cos^2(3x-2)\sin(3x-2)$

- (D) $-9\cos^2(3x-2)$
- (E) $-3\cos^2(3x-2)$

3. Multiple Choice Which of the following gives dy/dx

if
$$y = \sin^{-1}(2x)$$
?
(A) $-\frac{2}{\sqrt{1-4x^2}}$ (B) $-\frac{1}{\sqrt{1-4x^2}}$ (C) $\frac{2}{\sqrt{1-4x^2}}$
(D) $\frac{1}{\sqrt{1-4x^2}}$ (E) $\frac{2x}{1+4x^2}$

3.8 #28: Let $f(x) = x^5 + 2x^3 + x - 1$

(A) Prove that the inverse of f is also a function

- (B) Find f(1) and f'(1)
- (C) Find $f^{-1}(3)$ and $(f^{-1})^{/}(3)$

3.8 #29: Let $f(x) = \cos x + 3x$. Also let $g(x) = f^{-1}(x)$ (A) Prove that the inverse of f is also a function (B) Find g'(1)

EXTRA PROBLEM: Find a positive value of x = a such that the tangent to $f(x) = x^2 + 4$ at x = a also passes through the point (0,2).