Q101.BC.NOTES: Chapter 2.3, 2.4, 3.1, 3.2

Define $\sqrt{x^2}$:

Definition of |x|:

PART 1: IS f CONTINUOUS AT x = a?

Definition of a function continuous at x = a:

Theorem:

1. Let
$$f(x) = \begin{cases} 5-2x; & x \ge 1 \\ x^2+1; & x < 1 \end{cases}$$
 Prove that f is or is not continuous **at** $x = 1$. Support graphically.

2. Let $g(x) = \begin{cases} \frac{|x-2|}{|x-2|}; & x \neq 2\\ 0; & x = 2 \end{cases}$. Prove that g is or is not continuous **at** x = 2. Support graphically.

3. Let
$$p(x) = \begin{cases} \frac{x^2 - 1}{x + 1}; & x \neq -1 \\ 4; & x = -1 \end{cases}$$
. Prove that *p* is or is not continuous **at** $x = -1$.

PART 2: DERIVATIVE DEFINITION

DERIVATIVE INTRODUCTION

DEFINITION DEVELOPMENT

Average rate of change of *f* on [a,b] Slope of the secant line though curve *f* on [a, b]

Standard:

Alternate:

Instantaneous rate of change of *f* at x = aSlope of the line tangent to the curve of *f* at x = aDerivative of *f* at x = a

Standard:

Alternate:

- 1. Consider the function y = f(x) where $f(x) = 3x^2 2$
- a. Find the average rate of change in f on the interval [-1, 2]

b. Using the standard definition of a derivative at x = a ... Find the instantaneous rate of change in *f* at x = 1. (*Precede your answer with Lagrange notation*).

c. Write an equation of the tangent line to the graph of f(x) at x = 1.

- 2. Consider the function y = f(x) where $f(x) = \sqrt{x+1}$
- a. Find the average rate of change in f on the interval [0, 8]

b. Using the alternate definition of a derivative at x = a ... Find the instantaneous rate of change in *f* at x = 3. (*Precede your answer with Lagrange notation*).

c. Write an equation of the tangent line to the graph of f(x) at x = 3.

- 3. Consider the function y = f(x) where $f(x) = \begin{cases} 5-2x; & x \ge 1 \\ 6-4x+x^2; & x < 1 \end{cases}$
- a. Find the average rate of change in f on the interval [0, 2]

b. Using the standard definition of a derivative at x = a ... Find the instantaneous rate of change in *f* at x = 1. (*Precede your answer with Lagrange notation*).

c. Write an equation of the tangent line to the graph of f(x) at x = 1.

- 4. Consider the function y = g(x) where $g(x) = \begin{cases} 5-x; & x \ge 0\\ 2x+5; & x < 0 \end{cases}$
- a. Find the average rate of change in g on the interval [-2, 5]

b. Using the standard definition of a derivative at x = a ... Find the instantaneous rate of change in g at x = 0. (*Precede your answer with Lagrange notation*).

c. Write an equation of the tangent line to the graph of g(x) at x = 0.

LESSON 1 – HW:

1. Prove that $f(x) = x^2 - 2x + 3$ is or is not continuous at x = 1.

2. Prove that
$$g(x) = \begin{cases} 2 + \sqrt{x}; & x > 0 \\ 1 + e^{-x}; & x \le 0 \end{cases}$$
 is or is not continuous at $x = 0$.

3. Prove that
$$r(x) = \begin{cases} x+2; & x \neq -1 \\ 5; & x = -1 \end{cases}$$
 is or is not continuous at $x = -1$.

4. Prove that
$$f(x) = \begin{cases} x^2 + 2; & x \ge 0 \\ 1/x; & x < 0 \end{cases}$$
 is or is not continuous at $x = 0$.

- 5. A. Prove that $g(x) = \frac{x^2 9}{x 3}$ is not continuous at x = 3. B. Extend g(x), making it a piecewise function that is continuous at x = 3.
- 6. A. Prove that $d(x) = \frac{x-4}{\sqrt{x-2}}$ is not continuous at x = 4. B. Extend d(x), making it a piecewise function that is continuous at x = 4.

7. Prove that
$$h(x) = \begin{cases} x \sin \frac{1}{x} & x \neq 0 \\ 0 & x = 0 \end{cases}$$
 is or is not continuous **at** $x = 0$.

Hint: See the Sandwich Theorem of Limits.

8. If f(2) = 3 and f'(2) = 5, find an equation of (a) the tangent line, and (b) the normal line to the graph of y = f(x) at the point where x = 2.

- 9. Consider the function y = f(x) where $f(x) = x^2 4x$
- a. Find the average rate of change in f on the interval [-2, 4]
- b. Find the slope of the tangent line to the graph of f(x) at x = 1, i.e. the derivative of f at x = 1.
- c. Write an equation of the tangent line ℓ to the graph of f(x) at x = 1.
- 10. Consider the function y = f(x) where $f(x) = \begin{cases} -x; & x < 0 \\ x^2 x; & x \ge 0 \end{cases}$
- a. Find the average rate of change in f on the interval [-2, 4]
- b. Find the slope of the tangent line to the graph of f(x) at x = 0, i.e. the derivative of f at x = 0.
- c. Write an equation of the tangent line ℓ to the graph of f(x) at x = 0.
- 11. Consider the function y = f(x) where $f(x) = \begin{cases} -x^2; & x \ge -2\\ 2x; & x < -2 \end{cases}$
- a. Find the average rate of change in f on the interval [-4, 0]
- b. Find the instantaneous rate of change in f(x) at x = -2.

Classify f(x) as either smooth, a corner, a cusp, a vertical line tangent, or discontinuous at x = -2.

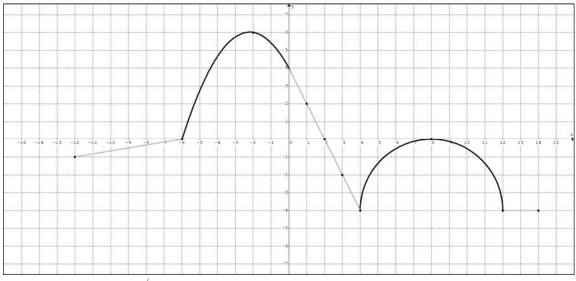
- c. Write an equation of the tangent line to the graph of f(x) at x = -2.
- 12. Consider the function $g(x) = \frac{1}{x}$.
- a. Find g'(2) using the standard definition of the derivative at x = a.
- b. Find g'(2) using the alternate definition of the derivative at x = a.

BC: Q101 LESSON 2

Review Illustration (What does it mean for a function to be differentiable at x = a?)

PART 3: DERIVATIVE ESTIMATION

1. The function y = f(x) is shown below. This function consists of line segments (in gray) and other non-linear curves (in black). Integer coordinates have been highlighted.



A) Find or estimate f'(1)

- B) Find or estimate f'(-1)
- C) Find or estimate f'(4)
- D) Find or estimate f'(0)
- E) Find or estimate f'(8)
- F) Find or estimate f'(10)
- G) Find or estimate f'(-9)
- H) Find or estimate f'(13)
- I) Find or estimate f'(-12)

J) Find or estimate all values of x where f(x) has a horizontal tangent.

2. Estimating the derivative with "an average on a small neighborhood." The coordinates of *f* for various values of *r* are given

The cool	The coordinates of <i>f</i> for various values of <i>x</i> are given.													
x	0	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0					
f	-12	-15	-16	-15	-12	-7	0	9	20					

Assuming a smooth curve representation of f(x).

		,				,	,						
				7									
			20						÷		·	•	
			10										
			10										
											•		
													Ť
	-	i				-	-	-	i	-	-	-	i i
-1	.5 -	1 -0	.5	o o.	5	1 1.	5	2 2	5	3 3	5	4 4	5
			5										
			10										
			10										
				ŧ				•					
			15						÷			÷	
			·····-20										

- A) Eyeball estimate f'(1)
- B) Eyeball estimate f'(2.5)
- C) Use a standard estimation of f'(1). Show your work.

D) Use a standard estimation of f'(2.5). Show your work.

PART 4: SPIRAL REVIW AND THE CONTINUITY AND DIFFERENTIBILITY CONNECTION

3. Consider the function y = f(x) where $f(x) = x^{2/3}$

a. Find the average rate of change in f on the interval [-1, 1]

b. Using the alternate definition of a derivative at x = a ... Find the instantaneous rate of change in f at x = 0. (*Precede your answer with Lagrange notation*).

c. Write an equation of the tangent line to the graph of f(x) at x = 0.

4. Consider the function $p(x) = \begin{cases} 2x; & x \ge 1\\ x+3; & x < 1 \end{cases}$

A. Use the standard definition of a derivative at x = a to prove that p is or is not differentiable at

- x=1. In other words, prove that the function p does or does not have a derivative at x=1.
- B. Classify the behavior of p(x) at x = 1.
- C. Provide a formal proof for whether or not p(x) is continuous at x = 1.

LOGIC:

THM:

PROOF:

PART 5 DERIVATIVE FUNCTION

DEFINITION: The derivative of the function f with respect to the variable x is the function f' whose value at x is $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$, provided it exists. (NO ALTERNATE DEFINITION)

DEF: Differentiable on an interval

A function is differentiable on an open interval (a, b) if f'(x) exists for every x in that interval. A function is differentiable on a closed interval [a, b] if f is differentiable on the open interval (a, b) and if the following limits exist:

 $f'_{+}(a) = \lim_{h \to 0^+} \frac{f(a+h) - f(a)}{h}$ and $f'_{-}(b) = \lim_{h \to 0^-} \frac{f(b+h) - f(b)}{h}$.

THM: Polynomial functions, unless restricted or broken, are differentiable for all values of x.

Definition: The derivative of the function f with respect to the variable x is the <u>function</u> f'(x) whose value at x is $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$, provided it exists. NO ALTERNATE DEFINITION FOR f'(x)

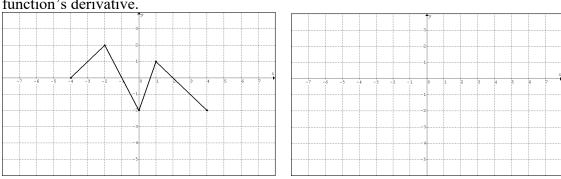
1. Consider the function $f(x) = 3x^2 - 2$. A. Find f'(x).

B. Write an equation of the tangent line to the graph of f(x) at x = -1 and x = 5.

C. Write an equation of the normal to the graph of f(x) at x = -1 and x = 5.

D. Find the points on the graph of f where the slope of the tangent line is parallel to y = 4x + 5.

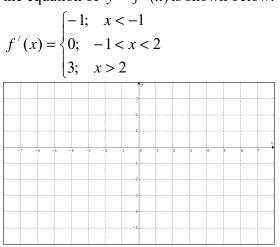
2. Graph f'(x) from f(x)



The graph of y = g(x) shown here is made of line segments joined end to end. Graph the function's derivative.

3. Graph f(x) from f'(x)

Sketch a possible graph of a continuous function *f* that has domain [-3, 3], where f(-1) = -2 and the equation of y = f'(x) is shown below.



Property Problem

4. Let f be a function that is differentiable throughout its domain and that has the following properties.

(i)
$$f(x+y) = \frac{f(x) + f(y)}{1 - f(x)f(y)}$$
 for all real numbers x, y, and $x + y$ in the domain of f.

(ii)
$$\lim_{h \to 0} f(h) = 0$$
 (iii) $\lim_{h \to 0} \frac{f(h)}{h} = 1$

- (a) Show that f(0) = 0.
- (b) Use the definition of the derivative to show that $f'(x) = 1 + [f(x)]^2$. Indicate where properties (i), (ii), and (iii) are used.

LESSON 2 – HW:

1. Use the table below to estimate a) f'(1.57) and b) f'(3)

t	0.00	0.56	0.92	1.19	1.30	1.39	1.57	1.74	1.98	2.18	2.41	2.64	3.24
f(t)	1577	1512	1448	1384	1319	1255	1191	1126	1062	998	933	869	805

2. Prove that $f(x) = \begin{cases} x; & x \le 1 \\ 1/x; & x > 1 \end{cases}$ is or is not differentiable at x = 1.

Classify f(x) as either smooth, a corner, a cusp, a vertical line tangent, or discontinuous at x = 1.

- 3. Consider the function $b(x) = \begin{cases} x; & x > 1 \\ -2 + x; & x \le 1 \end{cases}$
- a. Prove that *b* is or is not continuous at x = 1.
- b. Using the standard definition of a derivative at x = a, prove that f is not differentiable x = 1.
- c. Explain how you could have used part (a) to prove that f is not differentiable x = 1.
- 4. Using the definition for a derivative at x = a,

prove that $m(x) = \begin{cases} \sqrt{x}; & x \ge 1 \\ \frac{x}{2} + \frac{1}{2}; & x < 1 \end{cases}$ is or is not <u>differentiable</u> at x = 1.

Classify m(x) as either smooth, a corner, a cusp, a vertical line tangent, or discontinuous at x = 1.

5. Find the unique values of *a* and *b* that will make *g* both continuous and differentiable. $g(x) = \begin{cases} 3-x; & x < 1 \\ ax^2 + bx; & x \ge 1 \end{cases}$

6. The graph of the function y = f(x) shown here is made of line segments joined end to end. Graph y = f'(x) and state its domain.

			7					1							1	1	7									
		1	1		1			1	1																	
		3			11																					
		~	t		++		1									2										
			1				/																			
		1	1				/									1										
						1																				
								-		, Ť		_							_							
-5 -4	-3 -2	-1		2	3 4		0	1	8	9	-	5	a –	3 -	2 -1	·	U	1	2	3	4	5	0	(8	9
						/										1										
																-										
						/										-2										
																-										
					1											3-	1									
			terreter		trrrrt											4										

7. Sketch the graph of a continuous function with domain [-2,2], f(0) = -1, and $f'(x) = \begin{cases} 1; & x < -1 \\ -2; & x > -1 \end{cases}$.

									τy.							
									1							
								2								
	····		·	÷				1						÷	÷	·
1																
																- v
	-		-	-									-	-	-	ŝ
	- 3	7 -	6 -	5 -	4 -	3 -	2 -	1	0	1	2	3	4	5	6	7
	····•		÷	+				2					÷	÷	÷	
1																
								- 4								
								5							÷	
1																
1																

- 8. Using the information from problem 7, write an equation of the line tangent to f at x = 0.
- 9. Find f'(x) for $f(x) = 5x^2 2x + 1$ using the appropriate definition.
- 10. Find the value of x for which the tangent to $f(x) = 5x^2 2x + 1$ is horizontal.
- 11. Find f'(x) for $f(x) = \frac{1}{x+1}$ using the appropriate definition.
- 12. Find f'(x) for $f(x) = \sqrt{2x+1}$ using the appropriate definition.

13. Suppose that a function f is differentiable at x = 1, f(1) = 0, and $\lim_{h \to 0} \frac{f(1+h)}{h} = 5$. Find f'(1).

14. Suppose that f is a differentiable function with the property that

f(x+y) = f(x) + f(y) + 5xy and $\lim_{h \to 0} \frac{f(h)}{h} = 3$. Find f(0) and f'(x).

Definitions

<u>Is the function continuous at x = a?</u> DEF: A function *f* is continuous at x = a if and only if $\lim_{x \to a} f(x) = f(a)$.

What is the derivative of f at x = a?

DEF (Sandard): The derivative of the function f at the point x = a is $f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$, provided it exists.

DEF (Alternate): The derivative of the function f at the point x = a is $f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$, provided it exists.

Is the function differentiable at x = a?

DEF (Std): A function *f* is differentiable at x = a if $\lim_{h\to 0} \frac{f(a+h) - f(a)}{h}$ exists. If this limit does not exists then we say that the function is not differentiable at x = a.

DEF (alt): A function *f* is differentiable at x = a if $\lim_{x\to a} \frac{f(x) - f(a)}{x - a}$ exists. If this limit does not exists then we say that the function is not differentiable at x = a.

DEF: A function f is differentiable at the left endpoint x = a iff $f'_+(a) = \lim_{h \to 0^+} \frac{f(a+h) - f(a)}{h}$

DEF: A function f is differentiable at right endpoint x = b iff $f'_{-}(b) = \lim_{h \to 0^{-}} \frac{f(b+h) - f(b)}{h}$.

DEF: A continuous function is a function that is continuous at each point in its domain.

DEF: A differentiable function is a function that is differentiable at each point in its domain.

DEF: A function is continuous on an interval I, if it is continuous at each point in the interval I.

DEF: A function is <u>differentiable on an interval I</u>, if f is differentiable at each point in the interval I.