

BC.Q404.REVIEW ASSESSMENTS (Part 2)

RATE IN / RATE OUT

(20 points)

CALCULATORS PERMITTED

[Decimal Answers – Round to Three Decimal Places]

_	
NAME:	
DATE:	Ley
BLOCK:	
I (print name)	certify that I wrote all marks made in this
	write anything that I do not fully understand. I would now, having
	nent, be able to make similar (but equally accurate) responses if asked
*	ct assessment on my own.
1	,
Signature:	
-	

 $A(1) = 10.236 - \int_{0.5}^{5} f(t) dt + \int_{0.5}^{25} 25 dt$ 10.236 - 6.566 + 12.5 or 16.170 gallons

I. Set up, but do not solve, an equation used to find the answer to the following question: If the water hose is not removed from the pool, then when will it begin to overflow?

rate out

- 2. Ap oil tank contains 200 cubic meters of oil at t = 0. Oil is pumped into the tank at a rate $E(t) = 2 + \sin(t) \cdot \tan^{-1}(t)$ m^3 per hour and leaves at the rate $L(t) = \frac{t}{4} + 0.5$ m^3 per hour.
- A. What is the average rate of change in the amount of oil in the tank for $0 \le t \le 8$ hours? Include units of measure.

Ave value of rate =
$$\frac{\int [E(t) - L(t)] dt}{8 - 0} = \frac{4.80292}{8} = 0.600 \text{ m}^{3}/\text{hr}$$

B. What is the absolute maximum and absolute minimum amount of oil in the tank on the time interval $0 \le t \le 8$ hours? Show the analysis that leads to your conclusion.

$$A'(t) = E(t) - L(t) = 0 \quad \text{at} \quad t = 3.617 \text{ , } t = 6.344$$

Must show this
to justify
in terior critical

$$A(0) = 200$$
 3.617
 $A(3.617) = 200 + S[E(1) - L(1)] dt = 205.521$
 $A(6.344) = 200 + S[E(1) - L(1)] dt = 203.646$
 $A(8) = 200 + S[E(1) - L(1)] dt = 204.803$
 $ABS MIN = 200 M^{S}$
 $ABS MAY = 205.521 M^{S}$

3. A tank initially holds 400 cubic feet of water.

Water enters a tank at the rate g(t) cubic feet per hour for $0 \le t \le 30$ hours. Select values of g(t) are shown in the table below.

0 \ 7								
t	0	5	10	15	20	25	30	
g(t)	21	15	16	14	25	35	12	

Water drains from the tank at the rate h(t) cubic feet per hour for $0 \le t \le 30$ hours.

The graph of y = h(t) is made up of line segments and is shown in the graph below.

A. Approximate the total amount of water that enters the tank between 0 and 30 hours using a **trapezoidal** sum with six equal intervals. Simplify.

$$\int_{0}^{26} g(t) dt \approx \frac{5}{2} \left(21 + 2(15) + 2(16) + 2(14) + 2(25) + 2(35) + 12 \right)$$

$$= 607.5 + 3$$

B. How much water left the tank over the first 30 hours?

$$\int_{0}^{30} h(t) dt = 15(5) + \frac{15+10}{2}(5) + 15(10) + \frac{10+20}{2}(5) = 362.5 + \frac{3}{4}$$

C. Using the estimate in part A, find the amount of water in the tank at time t = 30 hours.

$$A(30) = 400 + \int_{0}^{30} 940 da - \int_{0}^{30} h(t) dt$$

$$= 400 + 607.5 - 362.5$$

$$= 645 \text{ ft}^{3}$$

D. Is water volume increasing or decreasing at time t = 10 hours? Justify.

E. Estimate the value of g'(27) and find the value of h'(27). Include units of measure for each.

$$g'(27) \approx \frac{g(30) - g(25)}{30 - 25} = \frac{12 - 3.5}{5} + \frac{3}{hr^2} = \frac{13 + \frac{3}{hr^2}}{\frac{1}{hr^2}} = \frac{12 - \frac{3.5}{5}}{\frac{1}{hr^2}} = \frac{12 - \frac{3.5}{hr^2}}{\frac{1}{hr^2}} = \frac{12 - \frac{3.5}{hr^2}}{\frac$$

$$h'(27) = 2 f + 3/hr^2$$

F. Using the correct units, find and interpret the value of $\frac{1}{30} \int_{0}^{30} h(t)dt$ in the context of the problem.

$$\frac{362.5}{30} = 12.083 \text{ ft}^3/h$$

G. Using the correct units, find and interpret the value of $\frac{1}{30} \int_{0}^{30} g'(t) dt$ in the context of the problem.

$$\frac{12-21}{30} = -0.3 + \frac{3}{hr^2}$$