
BC: Q502 – Vector Basics 

Lesson 1: The Dot Product 

Lecture: Online at mrbermel.com 

Text:  Supplemental Text Chapter 12 (pdf provided here starting on the next page) 

Practice: Section 12.3 Pg. 784 (pdf Pg. 22) #1, 7, 9, 11, 13b, 20, 21, 23, 26, 27, 37, 43, 44, 45, 49 

Additional Practice:  Find the work done by the constant force field  7,1,2 F as a particle moves 

along a line a straight line from the point (2, ‐3, 5) to (1, 7, ‐4).  

 

Lesson 2: The Cross Product 

Lecture: Online at mrbermel.com (torque applications will not be assessed on this examination) 

Text:  Supplemental Text Chapter 12 (pdf provided here starting on the next page) 

Practice1: Section 12.4 Pg. 792 (pdf Pg. 30) #5, 9, 10, 13, 14, 15, 16, 17, 19, 22, 31, 43, 45 

Practice2: Prove the vectors a and b are parallel if and only if  0ba   

 



764

VECTORS AND THE
GEOMETRY OF SPACE

12

In this chapter we introduce vectors and coordinate systems for three-dimensional

space. This will be the setting for our study of the calculus of functions of two variables

in Chapter 14 because the graph of such a function is a surface in space. In this chapter

we will see that vectors provide particularly simple descriptions of lines and planes 

in space.

Wind velocity is a vector because it has both magnitude
and direction. Pictured are velocity vectors showing 
the wind pattern over the North Atlantic and Western
Europe on February 28, 2007. Larger arrows indicate
stronger winds.
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THREE-DIMENSIONAL COORDINATE SYSTEMS

To locate a point in a plane, two numbers are necessary. We know that any point in 
the plane can be represented as an ordered pair of real numbers, where is the 
-coordinate and is the -coordinate. For this reason, a plane is called two-dimensional.

To locate a point in space, three numbers are required. We represent any point in space by
an ordered triple of real numbers.

In order to represent points in space, we first choose a fixed point (the origin) and
three directed lines through that are perpendicular to each other, called the coordinate
axes and labeled the -axis, -axis, and -axis. Usually we think of the - and -axes as
being horizontal and the -axis as being vertical, and we draw the orientation of the axes
as in Figure 1. The direction of the -axis is determined by the right-hand rule as illus-
trated in Figure 2: If you curl the fingers of your right hand around the -axis in the direc-
tion of a counterclockwise rotation from the positive -axis to the positive -axis, then
your thumb points in the positive direction of the -axis.

The three coordinate axes determine the three coordinate planes illustrated in Fig-
ure 3(a). The -plane is the plane that contains the - and -axes; the -plane contains
the - and -axes; the -plane contains the - and -axes. These three coordinate planes
divide space into eight parts, called octants. The first octant, in the foreground, is deter-
mined by the positive axes.

Because many people have some difficulty visualizing diagrams of three-dimensional
figures, you may find it helpful to do the following [see Figure 3(b)]. Look at any bottom
corner of a room and call the corner the origin. The wall on your left is in the -plane, the
wall on your right is in the -plane, and the floor is in the -plane. The -axis runs along
the intersection of the floor and the left wall. The -axis runs along the intersection of the
floor and the right wall. The -axis runs up from the floor toward the ceiling along the inter-
section of the two walls. You are situated in the first octant, and you can now imagine seven
other rooms situated in the other seven octants (three on the same floor and four on the
floor below), all connected by the common corner point .

Now if is any point in space, let be the (directed) distance from the -plane to 
let be the distance from the -plane to and let be the distance from the -plane to

. We represent the point by the ordered triple of real numbers and we call ,
, and the coordinates of ; is the -coordinate, is the -coordinate, and is the 
-coordinate. Thus, to locate the point , we can start at the origin and move units

along the -axis, then units parallel to the -axis, and then units parallel to the -axis
as in Figure 4.
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The point determines a rectangular box as in Figure 5. If we drop a perpen-
dicular from to the -plane, we get a point with coordinates called the pro-
jection of on the -plane. Similarly, and are the projections of on
the -plane and -plane, respectively.

As numerical illustrations, the points and are plotted in Fig-
ure 6.

The Cartesian product is the set of all ordered
triples of real numbers and is denoted by . We have given a one-to-one correspon-
dence between points in space and ordered triples in . It is called a three-
dimensional rectangular coordinate system. Notice that, in terms of coordinates, the
first octant can be described as the set of points whose coordinates are all positive.

In two-dimensional analytic geometry, the graph of an equation involving and is a
curve in . In three-dimensional analytic geometry, an equation in , , and represents
a surface in .

EXAMPLE 1 What surfaces in are represented by the following equations?
(a) (b)

SOLUTION
(a) The equation represents the set , which is the set of all points
in whose -coordinate is . This is the horizontal plane that is parallel to the -plane
and three units above it as in Figure 7(a).

(b) The equation represents the set of all points in whose -coordinate is 5.
This is the vertical plane that is parallel to the -plane and five units to the right of it as
in Figure 7(b). M
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When an equation is given, we must understand from the context whether it rep-
resents a curve in or a surface in . In Example 1, represents a plane in , but
of course can also represent a line in if we are dealing with two-dimensional ana-
lytic geometry. See Figure 7(b) and (c).

In general, if is a constant, then represents a plane parallel to the -plane,
is a plane parallel to the -plane, and is a plane parallel to the -plane. In

Figure 5, the faces of the rectangular box are formed by the three coordinate planes 
(the -plane), (the -plane), and (the -plane), and the planes , ,
and .

EXAMPLE 2 Describe and sketch the surface in represented by the equation .

SOLUTION The equation represents the set of all points in whose - and -coordinates
are equal, that is, . This is a vertical plane that intersects the 

-plane in the line , . The portion of this plane that lies in the first octant is
sketched in Figure 8. M

The familiar formula for the distance between two points in a plane is easily extended
to the following three-dimensional formula.

DISTANCE FORMULA IN THREE DIMENSIONS The distance between the
points and is

To see why this formula is true, we construct a rectangular box as in Figure 9, where 
and are opposite vertices and the faces of the box are parallel to the coordinate planes.
If and are the vertices of the box indicated in the figure, then

Because triangles and are both right-angled, two applications of the Pythago-
rean Theorem give

and

Combining these equations, we get

Therefore  � P1P2 � � s�x2 � x1�2 � �y2 � y1�2 � �z2 � z1�2 

 � �x2 � x1�2 � �y2 � y1�2 � �z2 � z1�2

 � � x2 � x1 �2 � � y2 � y1 �2 � � z2 � z1 �2

 � P1P2 �2 � � P1A �2 � � AB �2 � � BP2 �2

� P1B �2 � � P1A �2 � � AB �2

� P1P2 �2 � � P1B �2 � � BP2 �2

P1ABP1BP2

� BP2 � � � z2 � z1 �� AB � � � y2 � y1 �� P1A � � � x2 � x1 �
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EXAMPLE 3 The distance from the point to the point is

M

EXAMPLE 4 Find an equation of a sphere with radius and center .

SOLUTION By definition, a sphere is the set of all points whose distance from 
is . (See Figure 10.) Thus is on the sphere if and only if . Squaring both

sides, we have or

M

The result of Example 4 is worth remembering.

EQUATION OF A SPHERE An equation of a sphere with center and 
radius is

In particular, if the center is the origin , then an equation of the sphere is

EXAMPLE 5 Show that is the equation of a
sphere, and find its center and radius.

SOLUTION We can rewrite the given equation in the form of an equation of a sphere if we
complete squares:

Comparing this equation with the standard form, we see that it is the equation of a
sphere with center and radius . M

EXAMPLE 6 What region in is represented by the following inequalities?

SOLUTION The inequalities

can be rewritten as

so they represent the points whose distance from the origin is at least 1 and at
most 2. But we are also given that , so the points lie on or below the xy-plane. 
Thus the given inequalities represent the region that lies between (or on) the spheres

and and beneath (or on) the xy-plane. It is sketched
in Figure 11. M
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15–18 Show that the equation represents a sphere, and find its 
center and radius.

15.

16.

17.

18.

19. (a) Prove that the midpoint of the line segment from
to is

(b) Find the lengths of the medians of the triangle with vertices
, , and .

20. Find an equation of a sphere if one of its diameters has end-
points and .

Find equations of the spheres with center that touch
(a) the -plane, (b) the -plane, (c) the -plane.

22. Find an equation of the largest sphere with center (5, 4, 9) that
is contained in the first octant.

23–32 Describe in words the region of represented by the equa-
tion or inequality.

23. 24.

25. 26.

28.

29. 30.

32.

33–36 Write inequalities to describe the region.

33. The region between the -plane and the vertical plane 

34. The solid cylinder that lies on or below the plane and on
or above the disk in the -plane with center the origin and
radius 2

The region consisting of all points between (but not on) 
the spheres of radius and centered at the origin, 
where 

36. The solid upper hemisphere of the sphere of radius 2 centered
at the origin

r � R
Rr

35.

xy
z � 8

x � 5yz

x 2 � y 2 � z 2 � 2zx 2 � z 2 � 931.

x � zx 2 � y 2 � z 2 � 3

z 2 � 10 � z � 627.

y 	 0x � 3

x � 10y � �4

� 3

xzyzxy
�2, �3, 6�21.

�4, 3, 10��2, 1, 4�

C�4, 1, 5�B��2, 0, 5�A�1, 2, 3�

� x1 � x2

2
, 

 y1 � y2

2
, 

z1 � z2

2 �
P2�x2, y2, z2 �P1�x1, y1, z1�

4x 2 � 4y2 � 4z2 � 8x � 16y � 1

2x 2 � 2y 2 � 2z 2 � 8x � 24z � 1

x 2 � y 2 � z 2 � 8x � 6y � 2z � 17 � 0

x 2 � y 2 � z2 � 6x � 4y � 2z � 11

1. Suppose you start at the origin, move along the -axis a
distance of 4 units in the positive direction, and then move
downward a distance of 3 units. What are the coordinates 
of your position?

2. Sketch the points , , , and 
on a single set of coordinate axes.

3. Which of the points , , and is
closest to the -plane? Which point lies in the -plane?

4. What are the projections of the point (2, 3, 5) on the -, -,
and -planes? Draw a rectangular box with the origin and

as opposite vertices and with its faces parallel to the
coordinate planes. Label all vertices of the box. Find the length
of the diagonal of the box.

Describe and sketch the surface in represented by the equa-
tion .

6. (a) What does the equation represent in ? What does
it represent in ? Illustrate with sketches.

(b) What does the equation represent in ? What does
represent? What does the pair of equations ,
represent? In other words, describe the set of points

such that and . Illustrate with a sketch.

7–8 Find the lengths of the sides of the triangle . Is it a right
triangle? Is it an isosceles triangle?

7. , ,

8. , ,

9. Determine whether the points lie on straight line.
(a) , ,
(b) , ,

10. Find the distance from to each of the following.
(a) The -plane (b) The -plane
(c) The -plane (d) The -axis
(e) The -axis (f) The -axis

11. Find an equation of the sphere with center and
radius 5. What is the intersection of this sphere with the 

-plane?

12. Find an equation of the sphere with center and
radius 5. Describe its intersection with each of the coordinate
planes.

Find an equation of the sphere that passes through the point 
and has center .

14. Find an equation of the sphere that passes through the origin
and whose center is .�1, 2, 3�

�3, 8, 1��4, 3, �1�
13.

�2, �6, 4�
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C�1, 3, 3�B�3, 7, �2�A�2, 4, 2�

R�4, �5, 4�Q�4, 1, 1�P�2, �1, 0�

R�1, 2, 1�Q�7, 0, 1�P�3, �2, �3�

PQR

z � 5y � 3�x, y, z�
z � 5

y � 3z � 5
�3y � 3

�3
�2x � 4

x � y � 2
�35.

�2, 3, 5�
xz

yzxy

yzxz
R�0, 3, 8�Q��5, �1, 4�P�6, 2, 3�

�1, �1, 2��2, 4, 6��4, 0, �1��0, 5, 2�

x
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words, the points on are directly beneath, or above, the
points on .)
(a) Find the coordinates of the point on the line .
(b) Locate on the diagram the points , , and , where 

the line intersects the -plane, the -plane, and the 
-plane, respectively.

38. Consider the points such that the distance from to
is twice the distance from to . Show

that the set of all such points is a sphere, and find its center and
radius.

Find an equation of the set of all points equidistant from the
points and . Describe the set.

40. Find the volume of the solid that lies inside both of the spheres

and x 2 � y 2 � z2 � 4

x 2 � y 2 � z2 � 4x � 2y � 4z � 5 � 0

B�6, 2, �2�A��1, 5, 3�
39.

B�6, 2, �2�PA��1, 5, 3�
PP
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yzxyL1

CBA
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L237. The figure shows a line in space and a second line 
which is the projection of on the -plane. (In other 
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VECTORS

The term vector is used by scientists to indicate a quantity (such as displacement or veloc-
ity or force) that has both magnitude and direction. A vector is often represented by an
arrow or a directed line segment. The length of the arrow represents the magnitude of the
vector and the arrow points in the direction of the vector. We denote a vector by printing a
letter in boldface or by putting an arrow above the letter 

For instance, suppose a particle moves along a line segment from point to point .
The corresponding displacement vector , shown in Figure 1, has initial point (the tail)
and terminal point (the tip) and we indicate this by writing AB

l
. Notice that the vec-

tor CD
l

has the same length and the same direction as even though it is in a differ-
ent position. We say that and are equivalent (or equal) and we write . The zero
vector, denoted by 0, has length . It is the only vector with no specific direction.

COMBINING VECTORS

Suppose a particle moves from , so its displacement vector is AB
l

. Then the particle
changes direction and moves from , with displacement vector BC

l
as in Figure 2. The

combined effect of these displacements is that the particle has moved from . The
resulting displacement vector AC

l
is called the sum of AB

l
and BC

l
and we write

AC
l

AB
l

BC
l

In general, if we start with vectors and , we first move so that its tail coincides with
the tip of and define the sum of and as follows.

DEFINITION OF VECTOR ADDITION If and are vectors positioned so the initial
point of is at the terminal point of , then the sum is the vector from the
initial point of to the terminal point of .vu

u � vuv
vu

vuu
vvu

��

A to C
B to C

A to B

0
u � vvu

vu �
v �B

Av
BA

�vl�.�v�
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The definition of vector addition is illustrated in Figure 3. You can see why this defini-
tion is sometimes called the Triangle Law.

In Figure 4 we start with the same vectors and as in Figure 3 and draw another 
copy of with the same initial point as . Completing the parallelogram, we see that

. This also gives another way to construct the sum: If we place and so
they start at the same point, then lies along the diagonal of the parallelogram with

and as sides. (This is called the Parallelogram Law.)

EXAMPLE 1 Draw the sum of the vectors shown in Figure 5.

SOLUTION First we translate and place its tail at the tip of , being careful to draw a 
copy of that has the same length and direction. Then we draw the vector [see
Figure 6(a)] starting at the initial point of and ending at the terminal point of the 
copy of .

Alternatively, we could place so it starts where starts and construct by the
Parallelogram Law as in Figure 6(b).

M

It is possible to multiply a vector by a real number . (In this context we call the real
number a scalar to distinguish it from a vector.) For instance, we want to be the same
vector as , which has the same direction as but is twice as long. In general, we mul-
tiply a vector by a scalar as follows.

DEFINITION OF SCALAR MULTIPLICATION If is a scalar and is a vector, then the
scalar multiple is the vector whose length is times the length of and
whose direction is the same as if and is opposite to if . If 
or , then .

This definition is illustrated in Figure 7. We see that real numbers work like scaling fac-
tors here; that’s why we call them scalars. Notice that two nonzero vectors are parallel if
they are scalar multiples of one another. In particular, the vector has the same
length as but points in the opposite direction. We call it the negative of .

By the difference of two vectors we mean

u � v � u � ��v�

u � v
vv

�v � ��1�v

cv � 0v � 0
c � 0c � 0vc � 0v

v� c �cv
vc

vv � v
2vc

c

FIGURE 6
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FIGURE 3 The Triangle Law
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Visual 12.2 shows how the Triangle
and Parallelogram Laws work for various
vectors .a and b
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So we can construct by first drawing the negative of , , and then adding it to
by the Parallelogram Law as in Figure 8(a). Alternatively, since the vec-
tor , when added to , gives . So we could construct as in Figure 8(b) by
means of the Triangle Law.

EXAMPLE 2 If are the vectors shown in Figure 9, draw .

SOLUTION We first draw the vector pointing in the direction opposite to and twice
as long. We place it with its tail at the tip of and then use the Triangle Law to draw

as in Figure 10.

M

COMPONENTS

For some purposes it’s best to introduce a coordinate system and treat vectors algebra-
ically. If we place the initial point of a vector at the origin of a rectangular coordinate
system, then the terminal point of has coordinates of the form or ,
depending on whether our coordinate system is two- or three-dimensional (see Figure 11).
These coordinates are called the components of and we write

or

We use the notation for the ordered pair that refers to a vector so as not to confuse
it with the ordered pair that refers to a point in the plane.

For instance, the vectors shown in Figure 12 are all equivalent to the vector
OP
l

whose terminal point is . What they have in common is that the ter-
minal point is reached from the initial point by a displacement of three units to the right 
and two upward. We can think of all these geometric vectors as representations of the 

FIGURE 12
Representations of the vector a=k3, 2l
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FIGURE 11
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algebraic vector . The particular representation OP
l

from the origin to the point
is called the position vector of the point .

In three dimensions, the vector OP
l

is the position vector of the
point . (See Figure 13.) Let’s consider any other representation AB

l
of , where

the initial point is and the terminal point is . Then we must have
, , and and so , , and
. Thus we have the following result.

Given the points and , the vector with represen-
tation AB

l
is

EXAMPLE 3 Find the vector represented by the directed line segment with initial point
) and terminal point .

SOLUTION By (1), the vector corresponding to AB
l

is

M

The magnitude or length of the vector is the length of any of its representations and
is denoted by the symbol or . By using the distance formula to compute the length
of a segment , we obtain the following formulas.

The length of the two-dimensional vector is

The length of the three-dimensional vector is

How do we add vectors algebraically? Figure 14 shows that if and
, then the sum is , at least for the case where the

components are positive. In other words, to add algebraic vectors we add their compo-
nents. Similarly, to subtract vectors we subtract components. From the similar triangles in
Figure 15 we see that the components of are and . So to multiply a vector by a
scalar we multiply each component by that scalar.

If and , then

Similarly, for three-dimensional vectors,

c	a1, a2, a3 
 � 	ca1, ca2, ca3 


	a1, a2, a3 
 � 	b1, b2, b3 
 � 	a1 � b1, a2 � b2, a3 � b3 


	a1, a2, a3 
 � 	b1, b2, b3 
 � 	a1 � b1, a2 � b2, a3 � b3 


ca � 	ca1, ca2 


a � b � 	a1 � b1, a2 � b2 
a � b � 	a1 � b1, a2 � b2 


b � 	b1, b2 
a � 	a1, a2 


ca2ca1ca

a � b � 	a1 � b1, a2 � b2 
b � 	b1, b2 

a � 	a1, a2 


� a � � sa 2
1 � a 2

2 � a 2
3

 

a � 	a1, a2, a3 


� a � � sa 2
1 � a 2

2
 

a � 	a1, a2 


OP
� v �� v �

v

a � 	�2 � 2, 1 � ��3�, 1 � 4 
 � 	�4, 4, �3 


B��2, 1, 1�A�2, �3, 4
V

a � 	x2 � x1, y2 � y1, z2 � z1 


aB�x2, y2, z2 �A�x1, y1, z1�1

a3 � z2 � z1

a2 � y2 � y1a1 � x2 � x1z1 � a3 � z2y1 � a2 � y2x1 � a1 � x2

B�x2, y2, z2 �A�x1, y1, z1�
aP�a1, a2, a3�

� 	a1, a2, a3 
a �

PP�3, 2�
a � 	3, 2 
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FIGURE 14
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b¡

b™b
a+b

a
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FIGURE 15

ca™

ca¡

ca
a™

a¡

a

FIGURE 13
Representations of a=ka¡, a™, a£l

O

z

y

x

position
vector of P

P(a¡, a™, a£)

A(x, y, z) B(x+a¡, y+a™, z+a£)



EXAMPLE 4 If and , find and the vectors ,
, , and .

SOLUTION

M

We denote by the set of all two-dimensional vectors and by the set of all three-
dimensional vectors. More generally, we will later need to consider the set of all 
-dimensional vectors. An -dimensional vector is an ordered -tuple:

where are real numbers that are called the components of . Addition and
scalar multiplication are defined in terms of components just as for the cases and

.

PROPERTIES OF VECTORS If , , and are vectors in and and are scalars,
then

1. 2.

3. 4.

5. 6.

7. 8.

These eight properties of vectors can be readily verified either geometrically or alge-
braically. For instance, Property 1 can be seen from Figure 4 (it’s equivalent to the Paral-
lelogram Law) or as follows for the case :

We can see why Property 2 (the associative law) is true by looking at Figure 16 and
applying the Triangle Law several times: The vector PQ

l
is obtained either by first con-

structing a � b and then adding c or by adding a to the vector b � c.
Three vectors in play a special role. Let

k � �0, 0, 1 �j � �0, 1, 0 �i � �1, 0, 0 �

V3

 � b � a

 � �b1 � a1, b2 � a2 � � �b1, b2 � � �a1, a2 �

 a � b � �a1, a2 � � �b1, b2 � � �a1 � b1, a2 � b2 �

n � 2

1a � a�cd �a � c�da�

�c � d�a � ca � dac�a � b� � ca � cb

a � ��a� � 0a � 0 � a

a � �b � c� � �a � b� � ca � b � b � a

dcVncba

n � 3
n � 2

aa1, a2, . . . , an

a � �a1, a2, . . . , an �

nnn
Vn

V3V2

 � �8, 0, 6 � � ��10, 5, 25 � � ��2, 5, 31 �

 2a � 5b � 2 �4, 0, 3 � � 5 ��2, 1, 5 �

 3b � 3 ��2, 1, 5 � � �3��2�, 3�1�, 3�5�� � ��6, 3, 15 �

 � �4 � ��2�, 0 � 1, 3 � 5 � � �6, �1, �2 �

 a � b � �4, 0, 3 � � ��2, 1, 5 �

 � �4 � ��2�, 0 � 1, 3 � 5 � � �2, 1, 8 �

 a � b � �4, 0, 3 � � ��2, 1, 5 �

 � a � � s42 � 02 � 32 � s25 � 5

2a � 5b3ba � b
a � b� a �b � ��2, 1, 5 �a � �4, 0, 3 �V

774 | | | | CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

N Vectors in dimensions are used to list vari-
ous quantities in an organized way. For instance,
the components of a six-dimensional vector

might represent the prices of six different ingre-
dients required to make a particular product.
Four-dimensional vectors are used in
relativity theory, where the first three compo-
nents specify a position in space and the fourth
represents time.

� x, y, z, t�

p � � p1, p2, p3, p4, p5, p6 �

n

FIGURE 16

b

c

a

(a+b)+c

P

Q

=a+(b+c)
a+b

b+c



These vectors , , and are called the standard basis vectors. They have length and
point in the directions of the positive -, -, and -axes. Similarly, in two dimensions we
define and . (See Figure 17.)

If , then we can write

Thus any vector in can be expressed in terms of , , and . For instance,

Similarly, in two dimensions, we can write

See Figure 18 for the geometric interpretation of Equations 3 and 2 and compare with
Figure 17.

EXAMPLE 5 If and , express the vector in terms
of , , and .

SOLUTION Using Properties 1, 2, 5, 6, and 7 of vectors, we have

M

A unit vector is a vector whose length is 1. For instance, , , and are all unit vec-
tors. In general, if , then the unit vector that has the same direction as is

In order to verify this, we let . Then and is a positive scalar, so has
the same direction as . Also

� u � � � ca � � � c � � a � �
1

� a �  � a � � 1

a
ucu � cac � 1�� a �

u �
1

� a �  a �
a

� a �  4

aa � 0
kji

 � 2 i � 4 j � 6k � 12 i � 21k � 14 i � 4 j � 15k

 2a � 3b � 2�i � 2 j � 3k� � 3�4 i � 7k�

kji
2a � 3bb � 4 i � 7 ka � i � 2 j � 3k

a � �a1, a2 � � a1 i � a2 j3

�1, �2, 6 � � i � 2 j � 6k

kjiV3

 a � a1 i � a2 j � a3 k2

 � a1 �1, 0, 0 � � a2 �0, 1, 0 � � a3 �0, 0, 1 �

 a � �a1, a2, a3 � � �a1, 0, 0 � � �0, a2, 0 � � �0, 0, a3 �

a � �a1, a2, a3 �

FIGURE 17
Standard basis vectors in V™ and V£ (a)

0

y

x

j

(1, 0)

i

(0, 1)

(b)

z

x
y

j

i

k

j � �0, 1 �i � �1, 0 �
zyx

1kji
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FIGURE 18

(b) a=a¡i+a™ j+a£k

(a) a=a¡i+a™ j

0

a

a¡i

a™ j

(a¡, a™)

a™ j

a£k

(a¡, a™, a£)

a¡i

a

y

x

z

x
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EXAMPLE 6 Find the unit vector in the direction of the vector .

SOLUTION The given vector has length

so, by Equation 4, the unit vector with the same direction is

M

APPLICATIONS

Vectors are useful in many aspects of physics and engineering. In Chapter 13 we will see
how they describe the velocity and acceleration of objects moving in space. Here we look
at forces.

A force is represented by a vector because it has both a magnitude (measured in pounds
or newtons) and a direction. If several forces are acting on an object, the resultant force
experienced by the object is the vector sum of these forces.

EXAMPLE 7 A 100-lb weight hangs from two wires as shown in Figure 19. Find the
tensions (forces) and in both wires and their magnitudes.

SOLUTION We first express and in terms of their horizontal and vertical components.
From Figure 20 we see that

.

The resultant of the tensions counterbalances the weight and so we must have

Thus

Equating components, we get

Solving the first of these equations for and substituting into the second, we get

So the magnitudes of the tensions are

and

Substituting these values in (5) and (6), we obtain the tension vectors

MT2 � 55.05 i � 34.40 jT1 � �55.05 i � 65.60 j

 � T2 � � � T1 � cos 50�

cos 32�
� 64.91 lb

 � T1 � �
100

sin 50� � tan 32� cos 50�
� 85.64 lb

� T1 � sin 50� � � T1� cos 50�

cos 32�
 sin 32� � 100

� T2 �
 � T1 � sin 50� � � T2 � sin 32� � 100

 �� T1 � cos 50� � � T2 � cos 32� � 0

(�� T1 � cos 50� � � T2 � cos 32�) i � (� T1 � sin 50� � � T2 � sin 32�) j � 100 j

T1 � T2 � �w � 100 j

wT1 � T2

 T2 � � T2 � cos 32� i � � T2 � sin 32� j6

 T1 � �� T1 � cos 50� i � � T1 � sin 50� j5

T2T1

T2T1

1
3 �2 i � j � 2k� � 2

3 i �
1
3 j �

2
3 k

� 2 i � j � 2k � � s2 2 � ��1�2 � ��2�2 � s9 � 3

2 i � j � 2k
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FIGURE 20

50°

w

T¡

50° 32°

32°

T™

FIGURE 19

100

T¡

50° 32°
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9. , 10. ,

, 12. ,

13–16 Find the sum of the given vectors and illustrate 
geometrically.

13. , 14. ,

15. , 16. ,

17–20 Find a � b, 2a � 3b, , and .

17. ,

18. ,

19. ,

20. ,

21–23 Find a unit vector that has the same direction as the given
vector.

21. 22.

24. Find a vector that has the same direction as but has
length 6.

If lies in the first quadrant and makes an angle with the
positive -axis and , find in component form.

26. If a child pulls a sled through the snow on a level path with a
force of 50 N exerted at an angle of above the horizontal,
find the horizontal and vertical components of the force.

27. A quarterback throws a football with angle of elevation and
speed . Find the horizontal and vertical components of
the velocity vector.

28–29 Find the magnitude of the resultant force and the angle it
makes with the positive -axis.

28. 29.

30. The magnitude of a velocity vector is called speed. Suppose
that a wind is blowing from the direction N W at a speed of
50 km�h. (This means that the direction from which the wind
blows is west of the northerly direction.) A pilot is steering 45�

45�

300 N

200 N

60°
0

y

x

20 lb

16 lb

45°
0

y

x30°

x

60 ft�s
40 �

38 �

v� v � � 4x
��3v25.

��2, 4, 2 �

8 i � j � 4k23.

��4, 2, 4 ��3 i � 7j

b � 2 j � ka � 2 i � 4 j � 4 k

b � �2 i � j � 5ka � i � 2 j � 3k

b � i � 2 ja � 4 i � j

b � ��3, �6 �a � �5, �12 �
� a � b �� a �

�0, 4, 0 ���1, 0, 2 ��0, 0, �3 ��0, 1, 2 �

�5, 7 ���2, �1 ��6, �2 ���1, 4 �

B�4, 2, 1�A�4, 0, �2�B�2, 3, �1�A�0, 3, 1�11.

B�0, 6�A�2, 1�B�2, 2�A��1, 3�1. Are the following quantities vectors or scalars? Explain.
(a) The cost of a theater ticket
(b) The current in a river
(c) The initial flight path from Houston to Dallas
(d) The population of the world

2. What is the relationship between the point (4, 7) and the 
vector ? Illustrate with a sketch.

Name all the equal vectors in the parallelogram shown.

4. Write each combination of vectors as a single vector.

(a) PQ
l

QR
l

(b) RP
l

PS
l

(c) QS
l

PS
l

(d) RS
l

SP
l

PQ
l

5. Copy the vectors in the figure and use them to draw the 
following vectors.
(a) (b)
(c) (d)

6. Copy the vectors in the figure and use them to draw the 
following vectors.
(a) (b)
(c) (d)
(e) (f)

7–12 Find a vector with representation given by the directed line
segment AB

l
. Draw AB

l
and the equivalent representation starting at 

the origin.

7. , 8. , B�5, 3�A��2, �2�B��2, 1�A�2, 3�

a

a b

b � 3a2a � b
�

1
2 b2a

a � ba � b

wvu

w � v � uv � w
u � vu � v

Q

R
S

P

���

��

B

E

A

D C

3.

�4, 7 �

EXERCISES12.2



(a) Draw the vectors , , and 

(b) Show, by means of a sketch, that there are scalars and 
such that .

(c) Use the sketch to estimate the values of and .
(d) Find the exact values of and .

40. Suppose that and are nonzero vectors that are not parallel
and is any vector in the plane determined by and . Give 
a geometric argument to show that can be written as

for suitable scalars and Then give an argu-
ment using components.

If and , describe the set of all
points such that .

42. If , , and , describe the 
set of all points such that ,
where .

43. Figure 16 gives a geometric demonstration of Property 2 of 
vectors. Use components to give an algebraic proof of this 
fact for the case .

44. Prove Property 5 of vectors algebraically for the case .
Then use similar triangles to give a geometric proof.

Use vectors to prove that the line joining the midpoints of 
two sides of a triangle is parallel to the third side and half 
its length.

46. Suppose the three coordinate planes are all mirrored and a 
light ray given by the vector first strikes the 

-plane, as shown in the figure. Use the fact that the angle of
incidence equals the angle of reflection to show that the direc-
tion of the reflected ray is given by . Deduce
that, after being reflected by all three mutually perpendicular
mirrors, the resulting ray is parallel to the initial ray. (American
space scientists used this principle, together with laser beams
and an array of corner mirrors on the moon, to calculate very
precisely the distance from the earth to the moon.)

b
a

z

x

y

b � �a1, �a2, a3 �

xz
a � �a1, a2, a3 �

45.

n � 3

n � 2

k � � r1 � r2 �
� r � r1 � � � r � r2 � � k�x, y�

r2 � �x2, y2 �r1 � �x1, y1 �r � �x, y�

� r � r0 � � 1�x, y, z�
r0 � �x0, y0, z0 �r � �x, y, z�41.

t.sc � sa � tb
c

bac
ba

ts
ts

c � sa � tb
ts

c � �7, 1 � .
b � �2, �1 �a � �3, 2 �39.a plane in the direction N E at an airspeed (speed in still air)

of 250 km�h. The true course, or track, of the plane is the
direction of the resultant of the velocity vectors of the plane
and the wind. The ground speed of the plane is the magnitude
of the resultant. Find the true course and the ground speed of
the plane.

31. A woman walks due west on the deck of a ship at 3 mi�h. The
ship is moving north at a speed of 22 mi�h. Find the speed and
direction of the woman relative to the surface of the water.

32. Ropes 3 m and 5 m in length are fastened to a holiday decora-
tion that is suspended over a town square. The decoration has a
mass of 5 kg. The ropes, fastened at different heights, make
angles of and with the horizontal. Find the tension in
each wire and the magnitude of each tension.

33. A clothesline is tied between two poles, 8 m apart. The line 
is quite taut and has negligible sag. When a wet shirt with a
mass of 0.8 kg is hung at the middle of the line, the midpoint 
is pulled down 8 cm. Find the tension in each half of the
clothesline.

34. The tension T at each end of the chain has magnitude 25 N.
What is the weight of the chain?

35. Find the unit vectors that are parallel to the tangent line to the
parabola at the point .

36. (a) Find the unit vectors that are parallel to the tangent line to
the curve at the point .

(b) Find the unit vectors that are perpendicular to the tangent
line.

(c) Sketch the curve and the vectors in parts (a) 
and (b), all starting at .

37. If , , and are the vertices of a triangle, find 

AB
l

� BC
l

� CA
l

.

38. Let be the point on the line segment that is twice 
as far from as it is from . If OA

l
, OB

l
, and 

OC
l

, show that .c � 2
3 a �

1
3 bc �

b �a �AB
ABC

CBA

���6, 1�
y � 2 sin x

���6, 1�y � 2 sin x

�2, 4�y � x 2

37° 37°

3 m 5 m

52°
40°

40�52�

60�
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THE DOT PRODUCT

So far we have added two vectors and multiplied a vector by a scalar. The question arises:
Is it possible to multiply two vectors so that their product is a useful quantity? One such
product is the dot product, whose definition follows. Another is the cross product, which
is discussed in the next section.

DEFINITION If and , then the dot product of
and is the number given by

Thus, to find the dot product of and , we multiply corresponding components and
add. The result is not a vector. It is a real number, that is, a scalar. For this reason, the dot
product is sometimes called the scalar product (or inner product). Although Definition 1
is given for three-dimensional vectors, the dot product of two-dimensional vectors is
defined in a similar fashion:

EXAMPLE 1

M

The dot product obeys many of the laws that hold for ordinary products of real num-
bers. These are stated in the following theorem.

PROPERTIES OF THE DOT PRODUCT If , , and are vectors in and is a
scalar, then

1. 2.

3. 4.

5.

These properties are easily proved using Definition 1. For instance, here are the proofs
of Properties 1 and 3:

1.

3.

The proofs of the remaining properties are left as exercises. M

The dot product can be given a geometric interpretation in terms of the angle 
between and , which is defined to be the angle between the representations of and aba

�a � b

 � a � b � a � c

 � �a1b1 � a2b2 � a3b3� � �a1c1 � a2c2 � a3c3 �

 � a1b1 � a1c1 � a2b2 � a2c2 � a3b3 � a3c3

 � a1�b1 � c1� � a2�b2 � c2� � a3�b3 � c3�

 a � �b � c� � �a1, a2, a3 � � �b1 � c1, b2 � c2, b3 � c3 �

a � a � a 2
1 � a 2

2 � a 2
3 � � a �2

0 � a � 0

�ca� � b � c�a � b� � a � �cb�a � �b � c� � a � b � a � c

a � b � b � aa � a � � a �2

cV3cba2

 �i � 2 j � 3k� � �2 j � k� � 1�0� � 2�2� � ��3���1� � 7

 ��1, 7, 4 � � �6, 2, � 1
2 � � ��1��6� � 7�2� � 4(� 1

2 ) � 6

 �2, 4 � � �3, �1 � � 2�3� � 4��1� � 2
V

�a1, a2 � � �b1, b2 � � a1b1 � a2b2

ba

a � b � a1b1 � a2b2 � a3b3

a � bba
b � �b1, b2, b3 �a � �a1, a2, a3 �1

12.3
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that start at the origin, where . In other words, is the angle between the 
line segments OA

l
and OB

l
in Figure 1. Note that if and are parallel vectors, then 

or .
The formula in the following theorem is used by physicists as the definition of the dot

product.

THEOREM If is the angle between the vectors and , then

PROOF If we apply the Law of Cosines to triangle in Figure 1, we get

(Observe that the Law of Cosines still applies in the limiting cases when or , or
or .) But , , and , so Equation 4

becomes

Using Properties 1, 2, and 3 of the dot product, we can rewrite the left side of this equa-
tion as follows:

Therefore Equation 5 gives

Thus

or M

EXAMPLE 2 If the vectors a and b have lengths 4 and 6, and the angle between them is
, find .

SOLUTION Using Theorem 3, we have

M

The formula in Theorem 3 also enables us to find the angle between two vectors.

COROLLARY If is the angle between the nonzero vectors and , then

EXAMPLE 3 Find the angle between the vectors and .

SOLUTION Since

and � b � � s52 � ��3�2 � 22 � s38 � a � � s22 � 22 � ��1�2 � 3

b � �5, �3, 2 �a � �2, 2, �1 �V

cos � �
a � b

� a � � b �

ba�6

a � b � � a � � b � cos���3� � 4 � 6 � 1
2 � 12

a � b��3

 a � b � � a � � b � cos �

 �2a � b � �2 � a � � b � cos �

 � a �2 � 2a � b � � b �2 � � a �2 � � b �2 � 2 � a � � b � cos �

 � � a �2 � 2a � b � � b �2

 � a � a � a � b � b � a � b � b

 � a � b �2 � �a � b� � �a � b�

� a � b �2 � � a �2 � � b �2 � 2 � a � � b � cos �5

� AB � � � a � b �� OB � � � b �� OA � � � a �b � 0a � 0
�� � 0

� AB �2 � � OA �2 � � OB �2 � 2 � OA � � OB � cos �4

OAB

a � b � � a � � b � cos �

ba�3

� � �
� � 0ba

�0 � � � �b
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and since

we have, from Corollary 6,

So the angle between and is

M

Two nonzero vectors and are called perpendicular or orthogonal if the angle
between them is . Then Theorem 3 gives

and conversely if , then , so . The zero vector is considered
to be perpendicular to all vectors. Therefore we have the following method for determin-
ing whether two vectors are orthogonal.

Two vectors 

EXAMPLE 4 Show that is perpendicular to .

SOLUTION Since

these vectors are perpendicular by (7). M

Because if and if , we see that 
is positive for and negative for . We can think of as measuring 
the extent to which a and b point in the same direction. The dot product is positive
if a and b point in the same general direction, 0 if they are perpendicular, and negative if
they point in generally opposite directions (see Figure 2). In the extreme case where a and
b point in exactly the same direction, we have , so and

If a and b point in exactly opposite directions, then and so and
.

DIRECTION ANGLES AND DIRECTION COSINES

The direction angles of a nonzero vector are the angles , , and (in the interval
that makes with the positive -, -, and -axes. (See Figure 3.)

The cosines of these direction angles, , , and , are called the direction
cosines of the vector . Using Corollary 6 with replaced by , we obtain

(This can also be seen directly from Figure 3.) 

cos 	 �
a � i

� a � � i � �
a1

� a �8

iba
cos 
cos �cos 	

zyxa
	0, �
�
�	a

a � b � �� a � � b �
cos � � �1� � �

a � b � � a � � b �
cos � � 1� � 0

a � b
a � b� � ��2� � ��2

a � b��2 � � � �cos � � 00 � � � ��2cos � � 0

�2 i � 2 j � k� � �5 i � 4 j � 2k� � 2�5� � 2��4� � ��1��2� � 0

5 i � 4 j � 2k2 i � 2 j � k

a and b are orthogonal if and only if a � b � 0.7

0� � ��2cos � � 0a � b � 0

a � b � � a � � b � cos���2� � 0

� � ��2
ba

�or 84��� � cos�1� 2

3s38 � � 1.46

ba

cos � �
a � b

� a � � b � �
2

3s38 

a � b � 2�5� � 2��3� � ��1��2� � 2
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Similarly, we also have

By squaring the expressions in Equations 8 and 9 and adding, we see that

We can also use Equations 8 and 9 to write

Therefore

which says that the direction cosines of are the components of the unit vector in the direc-
tion of .

EXAMPLE 5 Find the direction angles of the vector .

SOLUTION Since , Equations 8 and 9 give

and so

M

PROJECTIONS

Figure 4 shows representations PQ
l

and PR
l

of two vectors and with the same initial
point . If is the foot of the perpendicular from to the line containing PQ

l
, then the 

vector with representation PS
l

is called the vector projection of onto and is denoted
by . (You can think of it as a shadow of .)

The scalar projection of onto (also called the component of along ) is defined
to be the signed magnitude of the vector projection, which is the number , where � b � cos �

abab

FIGURE 4
Vector projections

Q

R

P
S

b
a

R

S
P

Q

a

proja b

b

proja b

bproja b
ab

RSP
ba


 � cos�1� 3

s14 � � 37�� � cos�1� 2

s14 � � 58�	 � cos�1� 1

s14 � � 74�

cos 
 �
3

s14 cos � �
2

s14 cos 	 �
1

s14 

� a � � s12 � 22 � 32 � s14 

a � �1, 2, 3 �

a
a

1

� a�  a � �cos 	, cos �, cos 
 �11

 � � a � �cos 	, cos �, cos 
 �

 a � �a1, a2, a3 � � �� a � cos 	, � a � cos �, � a � cos 
�

cos2	 � cos2� � cos2
 � 110

cos 
 �
a3

� a �cos � �
a2

� a �9
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Visual 12.3B shows how Figure 4
changes when we vary .a and b
TEC



is the angle between and . (See Figure 5.) This is denoted by . Observe that
it is negative if . The equation

shows that the dot product of and can be interpreted as the length of times the scalar
projection of onto . Since

the component of along can be computed by taking the dot product of with the unit
vector in the direction of . We summarize these ideas as follows.

Scalar projection of onto :

Vector projection of onto :

Notice that the vector projection is the scalar projection times the unit vector in the direc-
tion of a.

EXAMPLE 6 Find the scalar projection and vector projection of onto
.

SOLUTION Since , the scalar projection of onto is

The vector projection is this scalar projection times the unit vector in the direction of :

M

One use of projections occurs in physics in calculating work. In Section 6.4 we defined
the work done by a constant force in moving an object through a distance as ,
but this applies only when the force is directed along the line of motion of the object.
Suppose, however, that the constant force is a vector PR

l
pointing in some other direc-

tion, as in Figure 6. If the force moves the object from to , then the displacement 
vector is PQ

l
. The work done by this force is defined to be the product of the com-

ponent of the force along and the distance moved:

But then, from Theorem 3, we have

W � � F � � D � cos � � F � D12

W � (� F � cos �) � D �
D

D �
QP

F �

W � FddF

proja b �
3

s14  
a

� a � �
3

14
 a � 
�

3

7
, 

9

14
, 

3

14�
a

compa b �
a � b

� a � �
��2��1� � 3�1� � 1�2�

s14 �
3

s14 

ab� a � � s��2�2 � 32 � 12 � s14 

a � ��2, 3, 1 �
b � �1, 1, 2 �V

proja b � �a � b

� a � � 
a

� a � �
a � b

� a �2  aab

compa b �
a � b

� a �ab

a
bab

� b � cos � �
a � b

� a � �
a

� a � � b

ab
aba

a � b � � a � � b � cos � � � a �(� b � cos �)

��2 � � � �
compa bba�
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Thus the work done by a constant force is the dot product , where is the displace-
ment vector.

EXAMPLE 7 A wagon is pulled a distance of 100 m along a horizontal path by a constant
force of 70 N. The handle of the wagon is held at an angle of above the horizontal.
Find the work done by the force.

SOLUTION If are the force and displacement vectors, as pictured in Figure 7, then
the work done is

M

EXAMPLE 8 A force is given by a vector and moves a particle from
the point to the point . Find the work done.

SOLUTION The displacement vector is PQ
l

, so by Equation 12, the work
done is

If the unit of length is meters and the magnitude of the force is measured in newtons,
then the work done is 36 joules. M

 � 6 � 20 � 10 � 36

 W � F � D � �3, 4, 5 � � �2, 5, 2 �

� �2, 5, 2 �D �

Q�4, 6, 2�P�2, 1, 0�
F � 3 i � 4 j � 5k

 � �70��100� cos 35� � 5734 N�m � 5734 J

W � F � D � � F � � D � cos 35�

F and D

35�

DF � DF
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11–12 If u is a unit vector, find and .

12.

13. (a) Show that .
(b) Show that .

14. A street vendor sells hamburgers, hot dogs, and soft
drinks on a given day. He charges $2 for a hamburger, $1.50
for a hot dog, and $1 for a soft drink. If and

, what is the meaning of the dot product ?

15–20 Find the angle between the vectors. (First find an exact
expression and then approximate to the nearest degree.)

15. ,

16. , b � �0, 5 �a � �s3 , 1 �
b � �s7 , 3 �a � ��8, 6 �

A � PP � �2, 1.5, 1 �
A � �a, b, c�

cba

i � i � j � j � k � k � 1
i � j � j � k � k � i � 0

w

u

v

w

u v

11.

u � wu � v1. Which of the following expressions are meaningful? Which are
meaningless? Explain.
(a) (b)

(c) (d)

(e) (f)

2. Find the dot product of two vectors if their lengths are 6 
and and the angle between them is .

3–10 Find .

3. ,

4. ,

5. ,

6. ,

7. ,

8. ,

9. , , the angle between and is 

10. , , the angle between and is 45�ba� b � � s6 � a � � 3

2��3ba� b � � 5� a � � 6

b � 2 i � 4 j � 6ka � 4 j � 3k

b � 5 i � 9ka � i � 2 j � 3k

b � � t, �t, 5t�a � �s, 2s, 3s�

b � �6, �3, �8 �a � �4, 1, 1
4 �

b � �0.7, 1.2 �a � ��2, 3�

b � ��5, 12 �a � ��2, 13 �
a � b

��41
3

� a � � �b � c�a � b � c

a � �b � c�� a � �b � c�
�a � b�c�a � b� � c

EXERCISES12.3
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39. ,

40. ,

Show that the vector is orthogonal to .
(It is called an orthogonal projection of .)

42. For the vectors in Exercise 36, find and illustrate by
drawing the vectors , , , and .

If , find a vector such that .

44. Suppose that and are nonzero vectors.
(a) Under what circumstances is ?
(b) Under what circumstances is ?

45. Find the work done by a force that moves
an object from the point to the point along
a straight line. The distance is measured in meters and the force
in newtons.

46. A tow truck drags a stalled car along a road. The chain makes
an angle of with the road and the tension in the chain is
1500 N. How much work is done by the truck in pulling the 
car 1 km?

47. A sled is pulled along a level path through snow by a rope. A
30-lb force acting at an angle of above the horizontal
moves the sled 80 ft. Find the work done by the force.

48. A boat sails south with the help of a wind blowing in the direc-
tion S E with magnitude 400 lb. Find the work done by the
wind as the boat moves 120 ft.

Use a scalar projection to show that the distance from a point
to the line is

Use this formula to find the distance from the point to
the line .

50. If , and , show
that the vector equation represents a
sphere, and find its center and radius.

Find the angle between a diagonal of a cube and one of its
edges.

52. Find the angle between a diagonal of a cube and a diagonal of
one of its faces.

53. A molecule of methane, , is structured with the four hydro-
gen atoms at the vertices of a regular tetrahedron and the car-
bon atom at the centroid. The bond angle is the angle formed
by the H— C—H combination; it is the angle between the
lines that join the carbon atom to two of the hydrogen atoms.
Show that the bond angle is about . Hint: Take the
vertices of the tetrahedron to be the points , , �0, 1, 0��1, 0, 0�

[109.5�

CH4

51.

�r � a� � �r � b� � 0
b � �b1, b2, b3 �r � �x, y, z � , a � �a1, a2, a3 �

3x � 4y � 5 � 0
��2, 3�

� ax1 � by1 � c �
sa 2 � b 2 

ax � by � c � 0P1�x1, y1�
49.

36�

40�

30�

�6, 12, 20��0, 10, 8�
F � 8 i � 6 j � 9k

proja b � projb a
comp a b � comp b a

ba

comp a b � 2ba � �3, 0, �1 �43.

orth a bproja bba
orth a b

b
aorth a b � b � proja b41.

b � i � j � ka � i � j � k

b � j �
1
2 ka � 2 i � j � 4k17. ,

18. ,

,

20. ,

21–22 Find, correct to the nearest degree, the three angles of the
triangle with the given vertices.

21. , ,

22. , ,

23–24 Determine whether the given vectors are orthogonal, 
parallel, or neither.

23. (a) ,
(b) ,
(c) ,
(d) ,

24. (a) ,
(b) ,
(c) ,

25. Use vectors to decide whether the triangle with vertices
, , and is right-angled.

26. For what values of are the vectors and 
orthogonal?

Find a unit vector that is orthogonal to both and .

28. Find two unit vectors that make an angle of with
.

29–33 Find the direction cosines and direction angles of the 
vector. (Give the direction angles correct to the nearest degree.)

29. 30.

31. 32.

33. , where 

34. If a vector has direction angles and , find the
third direction angle .

35–40 Find the scalar and vector projections of onto .

35. ,

36. ,

37. ,

38. , b � �5, �1, 4 �a � ��2, 3, �6 �

b � �1, 2, 3 �a � �3, 6, �2 �

b � ��4, 1 �a � �1, 2 �

b � �5, 0 �a � �3, �4 �

ab

�
� � ��3	 � ��4

c 
 0�c, c, c�

2 i � j � 2k2 i � 3 j � 6k

�1, �2, �1 ��3, 4, 5 �

v � �3, 4 �
60�

i � ki � j27.

�b, b2, b ���6, b, 2 �b

R�6, �2, �5�Q�2, 0, �4�P�1, �3, �2�

v � ��b, a, 0 �u � �a, b, c�
v � 2 i � j � ku � i � j � 2k
v � �4, �12, �8 �u � ��3, 9, 6 �

b � �3 i � 9 j � 6ka � 2 i � 6 j � 4k
b � 3 i � 4 j � ka � �i � 2 j � 5k

b � ��3, 2 �a � �4, 6 �
b � �6, �8, 2 �a � ��5, 3, 7 �

F�1, 2, �1�E��2, 4, 3�D�0, 1, 1�

C��1, 4�B�3, 6�A�1, 0�

b � 4 i � 3ka � i � 2 j � 2k

b � i � 2 j � 3ka � j � k19.

b � �2, �1, 0 �a � �4, 0, 2 �

b � ��2, 4, 3 �a � �3, �1, 5 �



Use Theorem 3 to prove the Cauchy-Schwarz Inequality:

58. The Triangle Inequality for vectors is

(a) Give a geometric interpretation of the Triangle Inequality.
(b) Use the Cauchy-Schwarz Inequality from Exercise 57 to

prove the Triangle Inequality. [Hint: Use the fact that
and use Property 3 of the

dot product.]

59. The Parallelogram Law states that 

(a) Give a geometric interpretation of the Parallelogram Law.
(b) Prove the Parallelogram Law. (See the hint in Exercise 58.)

60. Show that if and are orthogonal, then the vectors
and must have the same length.vu

u � vu � v

� a � b �2 � � a � b �2 � 2 � a �2 � 2 � b �2

� a � b �2 � �a � b� � �a � b�

� a � b � � � a � � � b �

� a � b � � � a � � b �
57., and as shown in the figure. Then the centroid

is .

54. If , where , , and are all nonzero 
vectors, show that bisects the angle between and .

55. Prove Properties 2, 4, and 5 of the dot product (Theorem 2).

56. Suppose that all sides of a quadrilateral are equal in length and
opposite sides are parallel. Use vector methods to show that the
diagonals are perpendicular.

bac
cbac � � a � b � � b � a

H

H
H

H

C

x

y

z

]( 1
2 , 12 , 12 )

�1, 1, 1��0, 0, 1�
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THE CROSS PRODUCT

The cross product of two vectors and , unlike the dot product, is a vector. For
this reason it is also called the vector product. Note that is defined only when and

are three-dimensional vectors.

DEFINITION If and , then the cross product
of and is the vector

This may seem like a strange way of defining a product. The reason for the particular
form of Definition 1 is that the cross product defined in this way has many useful proper-
ties, as we will soon see. In particular, we will show that the vector is perpendicu-
lar to both and .

In order to make Definition 1 easier to remember, we use the notation of determinants.
A determinant of order 2 is defined by

For example,

A determinant of order 3 can be defined in terms of second-order determinants as 
follows:

� a1

b1

c1

a2

b2

c2

a3

b3

c3 � � a1 	 b2

c2

b3

c3
	 � a2 	 b1

c1

b3

c3
	 � a3 	 b1

c1

b2

c2
	2

	 2

�6

1

4 	 � 2�4� � 1��6� � 14

	 a

c

b

d 	 � ad � bc

ba
a � b

a � b � �a2b3 � a3b2, a3b1 � a1b3, a1b2 � a2b1 �

ba
b � �b1, b2, b3 �a � �a1, a2, a3 �1

b
aa � b

baa � b

12.4



Observe that each term on the right side of Equation 2 involves a number in the first row
of the determinant, and is multiplied by the second-order determinant obtained from the
left side by deleting the row and column in which appears. Notice also the minus sign
in the second term. For example,

If we now rewrite Definition 1 using second-order determinants and the standard basis
vectors , , and , we see that the cross product of the vectors and

is

In view of the similarity between Equations 2 and 3, we often write

Although the first row of the symbolic determinant in Equation 4 consists of vectors, if we
expand it as if it were an ordinary determinant using the rule in Equation 2, we obtain
Equation 3. The symbolic formula in Equation 4 is probably the easiest way of remember-
ing and computing cross products.

EXAMPLE 1 If and , then

M

EXAMPLE 2 Show that for any vector in .

SOLUTION If , then

M � 0 i � 0 j � 0 k � 0

 � �a2a3 � a3a2� i � �a1a3 � a3a1� j � �a1a2 � a2a1� k

 a � a � � i
a1

a1

j
a2

a2

k
a3

a3 �
a � �a1, a2, a3 �

V3aa � a � 0V

 � ��15 � 28� i � ��5 � 8� j � �7 � 6� k � �43 i � 13 j � k

 � 	 3

7

4

�5 	  i � 	 1

2

4

�5 	  j � 	 1

2

3

7 	  k
 a � b � � i

1

2

j
3

7

k
4

�5 �
b � �2, 7, �5 �a � �1, 3, 4 �V

a � b � � i
a1

b1

j
a2

b2

k
a3

b3 �4

a � b � 	 a2

b2

a3

b3
	  i � 	 a1

b1

a3

b3
	  j � 	 a1

b1

a2

b2
	  k3

b � b1 i � b2 j � b3 k
a � a1 i � a2 j � a3 kkji

 � 1�0 � 4� � 2�6 � 5� � ��1��12 � 0� � �38

 � 1

3

�5

2

0

4

�1

1

2 � � 1 	 0

4

1

2 	 � 2 	 3

�5

1

2 	 � ��1� 	 3

�5

0

4 	

ai

ai

ai
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One of the most important properties of the cross product is given by the following 
theorem.

THEOREM The vector is orthogonal to both and .

PROOF In order to show that is orthogonal to , we compute their dot product as
follows:

A similar computation shows that . Therefore is orthogonal to
both and . M

If and are represented by directed line segments with the same initial point (as in
Figure 1), then Theorem 5 says that the cross product points in a direction perpen-
dicular to the plane through and . It turns out that the direction of is given by the
right-hand rule: If the fingers of your right hand curl in the direction of a rotation (through
an angle less than ) from to , then your thumb points in the direction of .

Now that we know the direction of the vector , the remaining thing we need to
complete its geometric description is its length . This is given by the following 
theorem.

THEOREM If is the angle between and (so ), then

PROOF From the definitions of the cross product and length of a vector, we have

(by Theorem 12.3.3)

Taking square roots and observing that because when
, we have

M

Since a vector is completely determined by its magnitude and direction, we can now say
that is the vector that is perpendicular to both and , whose orientation is deter-baa � b

� a � b � � � a � � b � sin 


0 � 
 � �
sin 
 � 0ssin 2
 � sin 


 � � a �2� b �2 sin2


 � � a �2� b �2 �1 � cos2
�

 � � a �2� b �2 � � a �2� b �2 cos2


 � � a �2� b �2 � �a � b�2

 � �a 2
1 � a 2

2 � a 2
3 ��b 2

1 � b 2
2 � b 2

3 � � �a1b1 � a2b2 � a3b3 �2

� a 2
1 b 2

2 � 2a1a2b1b2 � a 2
2b 2

1

 � a 2
2b 2

3 � 2a2a3b2b3 � a 2
3b 2

2 � a 2
3b 2

1 � 2a1a3b1b3 � a 2
1 b2

3

 � a � b �2 � �a2b3 � a3b2�2 � �a3b1 � a1b3�2 � �a1b2 � a2b1�2

� a � b � � � a � � b � sin 


0 � 
 � �ba
6

� a � b �
a � b

a � bba180�

a � bba
a � b

ba

ba
a � b�a � b� � b � 0

 � 0

 � a1a2b3 � a1b2a3 � a1a2b3 � b1a2a3 � a1b2a3 � b1a2a3

 � a1�a2b3 � a3b2 � � a2�a1b3 � a3b1� � a3�a1b2 � a2b1�

 �a � b� � a � 	 a2

b2

a3

b3
	  a1 � 	 a1

b1

a3

b3
	  a2 � 	 a1

b1

a2

b2
	  a3

aa � b

baa � b5

788 | | | | CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

FIGURE 1
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mined by the right-hand rule, and whose length is . In fact, that is exactly how
physicists define .

COROLLARY Two nonzero vectors and are parallel if and only if

PROOF Two nonzero vectors and are parallel if and only if or . In either case
, so and therefore . M

The geometric interpretation of Theorem 6 can be seen by looking at Figure 2. If and
are represented by directed line segments with the same initial point, then they determine

a parallelogram with base , altitude , and area

Thus we have the following way of interpreting the magnitude of a cross product.

The length of the cross product is equal to the area of the parallelogram
determined by and .

EXAMPLE 3 Find a vector perpendicular to the plane that passes through the points
, , and .

SOLUTION The vector PQ
l

PR
l

is perpendicular to both PQ
l

and PR
l

and is therefore per-
pendicular to the plane through , , and . We know from (12.2.1) that

PQ
l

PR
l

We compute the cross product of these vectors:

PQ
l

PR
l

So the vector is perpendicular to the given plane. Any nonzero scalar
multiple of this vector, such as , is also perpendicular to the plane. M

EXAMPLE 4 Find the area of the triangle with vertices , , 
and .

SOLUTION In Example 3 we computed that PQ
l

PR
l

. The area of the
parallelogram with adjacent sides and is the length of this cross product:

PQ
l

PR
l

The area of the triangle is half the area of this parallelogram, that is, . M

5
2 s82 PQRA

� s��40�2 � ��15�2 � 152 � 5s82 ���
PRPQ

� ��40, �15, 15 ��

R�1, �1, 1�
Q��2, 5, �1�P�1, 4, 6�

��8, �3, 3 �
��40, �15, 15 �

 � ��5 � 35� i � �15 � 0� j � �15 � 0� k � �40 i � 15 j � 15k

� � i
�3

0

j
1

�5

k
�7

�5 ��

� �1 � 1� i � ��1 � 4� j � �1 � 6� k � �5 j � 5k

� ��2 � 1� i � �5 � 4� j � ��1 � 6� k � �3 i � j � 7k

RQP
�

R�1, �1, 1�Q��2, 5, �1�P�1, 4, 6�

ba
a � b

A � � a �(� b � sin 
) � � a � b �
� b � sin 
� a �

b
a

a � b � 0� a � b � � 0sin 
 � 0
�
 � 0ba

a � b � 0

ba7

a � b
� a � � b � sin 
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a

b

¨

�b � sin ¨

FIGURE 2



If we apply Theorems 5 and 6 to the standard basis vectors , , and using ,
we obtain

Observe that

| Thus the cross product is not commutative. Also

whereas

| So the associative law for multiplication does not usually hold; that is, in general,

However, some of the usual laws of algebra do hold for cross products. The following the-
orem summarizes the properties of vector products.

THEOREM If , , and are vectors and is a scalar, then

1. a � b � �b � a

2. (ca) � b � c(a � b) � a � (cb)

3. a � (b � c) � a � b � a � c

4. (a � b) � c � a � c � b � c

5.

6.

These properties can be proved by writing the vectors in terms of their components 
and using the definition of a cross product. We give the proof of Property 5 and leave the
remaining proofs as exercises.

PROOF OF PROPERTY 5 If , , and , then

M

TRIPLE PRODUCTS

The product that occurs in Property 5 is called the scalar triple product of the
vectors , , and . Notice from Equation 9 that we can write the scalar triple product as a
determinant:

a � �b � c� � � a1

b1

c1

a2

b2

c2

a3

b3

c3 �10

cba
a � �b � c�

 � �a � b� � c

 � �a2b3 � a3b2 �c1 � �a3b1 � a1b3 �c2 � �a1b2 � a2b1�c3

 � a1b2c3 � a1b3c2 � a2b3c1 � a2b1c3 � a3b1c2 � a3b2c1

 a � �b � c� � a1�b2c3 � b3c2� � a2�b3c1 � b1c3� � a3�b1c2 � b2c1�9

c � �c1, c2, c3 �b � �b1, b2, b3 �a � �a1, a2, a3 �

a � �b � c� � �a � c�b � �a � b�c

a � �b � c� � �a � b� � c

ccba8

�a � b� � c � a � �b � c�

 �i � i� � j � 0 � j � 0

 i � �i � j� � i � k � �j

i � j � j � i

 i � k � �j  k � j � �i j � i � �k

 k � i � j j � k � i i � j � k


 � ��2kji
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The geometric significance of the scalar triple product can be seen by considering the
parallelepiped determined by the vectors , , and . (See Figure 3.) The area of the base 
parallelogram is . If is the angle between and , then the height 
of the parallelepiped is . (We must use instead of in case

.) Therefore the volume of the parallelepiped is

Thus we have proved the following formula.

The volume of the parallelepiped determined by the vectors , , and is the
magnitude of their scalar triple product:

If we use the formula in (11) and discover that the volume of the parallelepiped 
determined by a, b, and c is 0, then the vectors must lie in the same plane; that is, they are
coplanar.

EXAMPLE 5 Use the scalar triple product to show that the vectors ,
, and are coplanar.

SOLUTION We use Equation 10 to compute their scalar triple product:

Therefore, by (11), the volume of the parallelepiped determined by , , and is 0. This
means that , , and are coplanar. M

The product that occurs in Property 6 is called the vector triple product
of , , and . Property 6 will be used to derive Kepler’s First Law of planetary motion in
Chapter 13. Its proof is left as Exercise 46.

TORQUE

The idea of a cross product occurs often in physics. In particular, we consider a force 
acting on a rigid body at a point given by a position vector . (For instance, if we tighten
a bolt by applying a force to a wrench as in Figure 4, we produce a turning effect.) The
torque (relative to the origin) is defined to be the cross product of the position and force
vectors

and measures the tendency of the body to rotate about the origin. The direction of the
torque vector indicates the axis of rotation. According to Theorem 6, the magnitude of the

� � r � F

�

r
F

cba
a � �b � c�

cba
cba

 � 1�18� � 4�36� � 7��18� � 0

 � 1 	 �1

�9

4

18 	 � 4 	 2

0

4

18 	 � 7 	 2

0

�1

�9 	
 a � �b � c� � � 1

2

0

4

�1

�9

�7

4

18 �
c � �0, �9, 18 �b � �2, �1, 4 �

a � �1, 4, �7 �V

V � � a � �b � c� �

cba11

V � Ah � � b � c � � a � � cos 
 � � � a � �b � c� �


 
 ��2
cos 
� cos 
 �h � � a � � cos 
 �

hb � ca
A � � b � c �
cba
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a

b

¨

bxc

c
h

FIGURE 3

FIGURE 4

r

F

�

¨



torque vector is

where is the angle between the position and force vectors. Observe that the only com-
ponent of that can cause a rotation is the one perpendicular to , that is, . The
magnitude of the torque is equal to the area of the parallelogram determined by and .

EXAMPLE 6 A bolt is tightened by applying a 40-N force to a 0.25-m wrench as shown
in Figure 5. Find the magnitude of the torque about the center of the bolt.

SOLUTION The magnitude of the torque vector is

If the bolt is right-threaded, then the torque vector itself is

where is a unit vector directed down into the page. Mn

� � � � � n � 9.66 n

 � 10 sin 75� � 9.66 N�m

 � � � � � r � F � � � r � � F � sin 75� � �0.25��40� sin 75�

Fr
� F � sin 
rF




� � � � � r � F � � � r � � F � sin 
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14–15 Find and determine whether u � v is directed into
the page or out of the page.

14. 15.

The figure shows a vector in the -plane and a vector in
the direction of . Their lengths are and 
(a) Find .
(b) Use the right-hand rule to decide whether the components

of are positive, negative, or 0.

17. If and , find and .

18. If , , and , show
that .

Find two unit vectors orthogonal to both and
.�0, 4, 4 �

�1, �1, 1 �19.

a � �b � c� � �a � b� � c
c � �0, 0, �4 �b � ��1, 1, 0 �a � �3, 1, 2 �

b � aa � bb � �0, 1, 3 �a � �1, 2, 1 �

x

z

y

b

a

a � b

� a � b �
� b � � 2.� a � � 3k

bxya16.

|v |=8
150°

|u |=6

60°
|u |=5

|v |=10

� u � v �1–7 Find the cross product and verify that it is orthogonal
to both a and b.

1. ,

2. ,

3. ,

4. ,

5. ,

6. ,

,

8. If a � i � 2k and b � j � k, find a � b. Sketch a, b, and 
a � b as vectors starting at the origin.

9–12 Find the vector, not with determinants, but by using proper-
ties of cross products.

9. 10.

11. 12.

State whether each expression is meaningful. If not, explain
why. If so, state whether it is a vector or a scalar.
(a) (b)
(c) (d)
(e) (f) �a � b� � �c � d��a � b� � �c � d�

�a � b� � ca � �b � c�
a � �b � c�a � �b � c�

13.

�i � j� � �i � j�� j � k� � �k � i�

k � �i � 2 j��i � j� � k

b � �1, 2t, 3t 2 �a � � t, t 2, t 3 �7.

b � 2 i � et j � e�t ka � i � et j � e�t k

b � 1
2 i � j �

1
2 ka � i � j � k

b � 2 i � j � 4ka � j � 7k

b � �i � 5ka � i � 3 j � 2k

b � �2, 4, 6 �a � �1, 1, �1 �

b � �0, 8, 0 �a � �6, 0, �2 �

a � b

EXERCISES12.4

FIGURE 5

75°

40 N
0.25 m



SECTION 12.4 THE CROSS PRODUCT | | | | 793

40. Find the magnitude of the torque about if a 36-lb force is
applied as shown.

41. A wrench 30 cm long lies along the positive -axis and grips a
bolt at the origin. A force is applied in the direction 
at the end of the wrench. Find the magnitude of the force
needed to supply of torque to the bolt.

42. Let v � 5 j and let u be a vector with length 3 that starts at 
the origin and rotates in the -plane. Find the maximum and
minimum values of the length of the vector u � v. In what
direction does u � v point?

(a) Let be a point not on the line that passes through the
points and . Show that the distance from the point 
to the line is

where QR
l

and QP
l

.
(b) Use the formula in part (a) to find the distance from 

the point to the line through and
.

44. (a) Let be a point not on the plane that passes through the
points , , and . Show that the distance from to the
plane is

where QR
l

, QS
l

, and QP
l

.
(b) Use the formula in part (a) to find the distance from the

point to the plane through the points ,
, and .

Prove that .

46. Prove Property 6 of Theorem 8, that is,

47. Use Exercise 46 to prove that

48. Prove that

Suppose that .
(a) If , does it follow that ?b � ca � b � a � c

a � 049.

�a � b� � �c � d� � 	 a � c
a � d

b � c
b � d 	

a � �b � c� � b � �c � a� � c � �a � b� � 0

a � �b � c� � �a � c�b � �a � b�c

�a � b� � �a � b� � 2�a � b�45.

S�0, 0, 3�R�0, 2, 0�
Q�1, 0, 0�P�2, 1, 4�

c �b �a �

d � �� a � b� � c �
� a � b �

PdSRQ
P

R��1, 4, 7�
Q�0, 6, 8�P�1, 1, 1�

b �a �

d � � a � b �
� a �

L
PdRQ

LP43.

xy

100 N�m

�0, 3, �4 �
y

30°
36 lb

4 ft

4 ft
P

P20. Find two unit vectors orthogonal to both 
and .

21. Show that for any vector in .

22. Show that for all vectors and in .

23. Prove Property 1 of Theorem 8.

24. Prove Property 2 of Theorem 8.

25. Prove Property 3 of Theorem 8.

26. Prove Property 4 of Theorem 8.

27. Find the area of the parallelogram with vertices ,
, , and .

28. Find the area of the parallelogram with vertices ,
, , and .

29–32 (a) Find a nonzero vector orthogonal to the plane through
the points , , and , and (b) find the area of triangle .

, ,

30. , ,

, ,

32. , ,

33–34 Find the volume of the parallelepiped determined by the
vectors , , and .

33. , ,

34. , ,

35–36 Find the volume of the parallelepiped with adjacent edges
, , and .

35. , , ,

36. , , ,

37. Use the scalar triple product to verify that the vectors
, , and 

are coplanar.

38. Use the scalar triple product to determine whether the points
, , , and lie in the

same plane.

39. A bicycle pedal is pushed by a foot with a 60-N force as
shown. The shaft of the pedal is 18 cm long. Find the
magnitude of the torque about .

10°

70°
60 N

P

P

D�3, 6, �4�C�5, 2, 0�B�3, �1, 6�A�1, 3, 2�

w � 5 i � 9 j � 4 kv � 3 i � ju � i � 5 j � 2 k

S�0, 4, 2�R�5, 1, �1�Q��1, 2, 5�P�3, 0, 1�

S�2, �2, 2�R�3, �1, 1�Q�4, 1, 0�P�2, 0, �1�

PSPRPQ

c � � i � j � kb � i � j � ka � i � j � k

c � �4, �2, 5 �b � �0, 1, 2 �a � �6, 3, �1 �

cba

R�4, 3, �1�Q�0, 5, 2�P��1, 3, 1�

R�5, 3, 1�Q�4, 1, �2�P�0, �2, 0�31.

R�3, 0, 6�Q��1, 3, 4�P�2, 1, 5�

R�0, 0, 3�Q�0, 2, 0�P�1, 0, 0�29.

PQRRQP

N�3, 7, 3�M�3, 8, 6�L�1, 3, 6�
K�1, 2, 3�

D�2, �1�C�4, 2�B�0, 4�
A��2, 1�

V3ba�a � b� � b � 0

V3a0 � a � 0 � a � 0

2 i � k
i � j � k
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(These vectors occur in the study of crystallography. Vectors 
of the form , where each is an integer,
form a lattice for a crystal. Vectors written similarly in terms of

, , and form the reciprocal lattice.)
(a) Show that is perpendicular to if .
(b) Show that for .

(c) Show that .k1 � �k2 � k3 � �
1

v1 � �v2 � v3 �

i � 1, 2, 3k i � vi � 1
i � jvjk i

k3k2k1

nin1 v1 � n2 v2 � n3 v3

(b) If , does it follow that ?
(c) If and , does it follow 

that ?

50. If , , and are noncoplanar vectors, let

k3 �
v1 � v2

v1 � �v2 � v3 �

k2 �
v3 � v1

v1 � �v2 � v3 �
k1 �

v2 � v3

v1 � �v2 � v3 �

v3v2v1

b � c
a � b � a � ca � b � a � c

b � ca � b � a � c

A tetrahedron is a solid with four vertices, , , , and , and four triangular faces as shown in
the figure.

1. Let , , , and be vectors with lengths equal to the areas of the faces opposite the
vertices , , , and , respectively, and directions perpendicular to the respective faces and
pointing outward. Show that

2. The volume of a tetrahedron is one-third the distance from a vertex to the opposite face,
times the area of that face.
(a) Find a formula for the volume of a tetrahedron in terms of the coordinates of its vertices 

, , , and .
(b) Find the volume of the tetrahedron whose vertices are , , ,

and .

3. Suppose the tetrahedron in the figure has a trirectangular vertex S. (This means that the three
angles at S are all right angles.) Let A, B, and C be the areas of the three faces that meet at S,
and let D be the area of the opposite face PQR. Using the result of Problem 1, or otherwise,
show that

(This is a three-dimensional version of the Pythagorean Theorem.)

D 2 � A2 � B 2 � C 2

S�3, �1, 2�
R�1, 1, 2�Q�1, 2, 3�P�1, 1, 1�

SRQP

V

v1 � v2 � v3 � v4 � 0

SRQP
v4v3v2v1

SRQP

THE GEOMETRY OF A TETRAHEDROND I S C O V E R Y
P R O J E C T

P

S

R
Q

EQUATIONS OF LINES AND PLANES

A line in the -plane is determined when a point on the line and the direction of the line
(its slope or angle of inclination) are given. The equation of the line can then be written
using the point-slope form.

Likewise, a line in three-dimensional space is determined when we know a point
on and the direction of . In three dimensions the direction of a line is con-

veniently described by a vector, so we let be a vector parallel to . Let be an
arbitrary point on and let and be the position vectors of and (that is, they have
representations OPA and OPA). If is the vector with representation P PA, as in Figure 1,
then the Triangle Law for vector addition gives . But, since and are parallel
vectors, there is a scalar such that . Thus 

r � r0 � tv1

a � tvt
var � r0 � a

0a0

PP0rr0L
P�x, y, z�Lv

LLP0�x0, y0, z0�
L

xy

12.5

x

O

z

y

a

v
r

r¸L

P¸(x¸, y¸, z¸)

P(x, y, z)

FIGURE 1



which is a vector equation of . Each value of the parameter gives the position vector
of a point on . In other words, as varies, the line is traced out by the tip of the vec-

tor . As Figure 2 indicates, positive values of correspond to points on that lie on one
side of , whereas negative values of correspond to points that lie on the other side of 

If the vector that gives the direction of the line is written in component form as
, then we have . We can also write and

, so the vector equation (1) becomes

Two vectors are equal if and only if corresponding components are equal. Therefore we
have the three scalar equations:

where . These equations are called parametric equations of the line through the
point and parallel to the vector . Each value of the parameter 
gives a point on .

EXAMPLE 1
(a) Find a vector equation and parametric equations for the line that passes through the
point and is parallel to the vector .
(b) Find two other points on the line.

SOLUTION
(a) Here and , so the vector equa-
tion (1) becomes

or

Parametric equations are

(b) Choosing the parameter value gives , , and so is a
point on the line. Similarly, gives the point . M

The vector equation and parametric equations of a line are not unique. If we change the
point or the parameter or choose a different parallel vector, then the equations change. For
instance, if, instead of , we choose the point in Example 1, then the para-
metric equations of the line become

Or, if we stay with the point but choose the parallel vector , we
arrive at the equations

In general, if a vector is used to describe the direction of a line , then
the numbers , , and are called direction numbers of . Since any vector parallel to vLcba

Lv � �a, b, c�

z � 3 � 4ty � 1 � 8tx � 5 � 2t

2 i � 8 j � 4k�5, 1, 3�

z � 1 � 2ty � 5 � 4tx � 6 � t

�6, 5, 1��5, 1, 3�

�4, �3, 5�t � �1
�6, 5, 1�z � 1, y � 5x � 6t � 1

z � 3 � 2ty � 1 � 4tx � 5 � t

 r � �5 � t� i � �1 � 4t� j � �3 � 2t� k

 r � �5 i � j � 3k� � t�i � 4 j � 2k�

v � i � 4 j � 2kr0 � �5, 1, 3 � � 5 i � j � 3k

i � 4 j � 2k�5, 1, 3�

L�x, y, z�
tv � �a, b, c�P0�x0, y0, z0�

Lt � �

z � z0 � cty � y0 � btx � x0 � at2

�x, y, z� � �x0 � ta, y0 � tb, z0 � tc �

r0 � �x0, y0, z0 �
r � �x, y, z�tv � � ta, tb, tc �v � �a, b, c�

Lv
P0.tP0

Ltr
tLr

tL
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x

z

y

L
t=0 t>0

t<0

r¸

FIGURE 2

N Figure 3 shows the line in Example 1 and its
relation to the given point and to the vector that
gives its direction.

L

(5, 1, 3)
r¸

v=i+4j-2k

x

z

y

L

FIGURE 3



could also be used, we see that any three numbers proportional to , , and could also be
used as a set of direction numbers for .

Another way of describing a line is to eliminate the parameter from Equations 2. If
none of , , or is , we can solve each of these equations for , equate the results, and
obtain

These equations are called symmetric equations of . Notice that the numbers , , and
that appear in the denominators of Equations 3 are direction numbers of , that is, com-

ponents of a vector parallel to . If one of , , or is , we can still eliminate . For
instance, if , we could write the equations of as

This means that lies in the vertical plane .

EXAMPLE 2
(a) Find parametric equations and symmetric equations of the line that passes through
the points and .
(b) At what point does this line intersect the -plane?

SOLUTION
(a) We are not explicitly given a vector parallel to the line, but observe that the vector 
with representation is parallel to the line and

Thus direction numbers are , , and . Taking the point as 
, we see that parametric equations (2) are

and symmetric equations (3) are

(b) The line intersects the -plane when , so we put in the symmetric equa-
tions and obtain

This gives and , so the line intersects the -plane at the point . M

In general, the procedure of Example 2 shows that direction numbers of the line
through the points and are , , and and so
symmetric equations of are

x � x0

x1 � x0
�

y � y0

y1 � y0
�

z � z0

z1 � z0

L
z1 � z0y1 � y0x1 � x0P1�x1, y1, z1�P0�x0, y0, z0 �

L

( 11
4 , 1

4 , 0)xyy � 1
4x � 11

4

x � 2

1
�

y � 4

�5
�

3

4

z � 0z � 0xy

x � 2

1
�

y � 4

�5
�

z � 3

4

z � �3 � 4ty � 4 � 5tx � 2 � t

P0

�2, 4, �3�c � 4b � �5a � 1

v � �3 � 2, �1 � 4, 1 � ��3�� � �1, �5, 4 �

AB
l

v

xy
B�3, �1, 1�A�2, 4, �3�

x � x0L

y � y0

b
�

z � z0

c
x � x0

La � 0
t0cbaL

Lc
baL

x � x0

a
�

y � y0

b
�

z � z0

c
3

t0cba
tL

L
cba
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N Figure 4 shows the line in Example 2 and
the point where it intersects the -plane.xyP
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Often, we need a description, not of an entire line, but of just a line segment. How, for
instance, could we describe the line segment in Example 2? If we put in the para-
metric equations in Example 2(a), we get the point and if we put we get

. So the line segment is described by the parametric equations

or by the corresponding vector equation

In general, we know from Equation 1 that the vector equation of a line through the (tip
of the) vector in the direction of a vector is . If the line also passes through
(the tip of) , then we can take and so its vector equation is

The line segment from to is given by the parameter interval .

The line segment from to is given by the vector equation

EXAMPLE 3 Show that the lines and with parametric equations

are skew lines; that is, they do not intersect and are not parallel (and therefore do not lie
in the same plane).

SOLUTION The lines are not parallel because the corresponding vectors and
are not parallel. (Their components are not proportional.) If and had a

point of intersection, there would be values of and such that

But if we solve the first two equations, we get and , and these values don’t
satisfy the third equation. Therefore there are no values of and that satisfy the three
equations, so and do not intersect. Thus and are skew lines. M

PLANES

Although a line in space is determined by a point and a direction, a plane in space is 
more difficult to describe. A single vector parallel to a plane is not enough to convey the
“direction” of the plane, but a vector perpendicular to the plane does completely specify
its direction. Thus a plane in space is determined by a point in the plane and
a vector that is orthogonal to the plane. This orthogonal vector is called a normal 
vector. Let be an arbitrary point in the plane, and let and be the position
vectors of and . Then the vector is represented by P PA. (See Figure 6.) The nor-
mal vector is orthogonal to every vector in the given plane. In particular, is orthogonalnn

0r � r0PP0

rr0P�x, y, z�
nn

P0�x0, y0, z0�

L 2L1L 2L1

st
s � 8

5t � 11
5

 4 �   t � �3 � 4s

 �2 �  3t � 3 � s

 1 �  t � 2s

st
L 2L1�2, 1, 4 �

�1, 3, �1 �

 x � 2s  y � 3 � s  z � �3 � 4s

 x � 1 � t y � �2 � 3t z � 4 � t

L 2L1V

0 � t � 1r�t� � �1 � t�r0 � tr1

r1r04

0 � t � 1r1r0

r � r0 � t�r1 � r0� � �1 � t�r0 � tr1

v � r1 � r0r1

r � r0 � tvvr0

0 � t � 1r�t� � �2 � t, 4 � 5t, �3 � 4 t�

 x � 2 � t y � 4 � 5t z � �3 � 4t    0 � t � 1

AB�3, �1, 1�
t � 1�2, 4, �3�

t � 0AB
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N The lines and in Example 3, shown in
Figure 5, are skew lines.
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to and so we have

which can be rewritten as

Either Equation 5 or Equation 6 is called a vector equation of the plane.
To obtain a scalar equation for the plane, we write , , and

. Then the vector equation (5) becomes

or

Equation 7 is the scalar equation of the plane through with normal vector
.

EXAMPLE 4 Find an equation of the plane through the point with normal
vector . Find the intercepts and sketch the plane.

SOLUTION Putting , , , , , and in Equation 7, we
see that an equation of the plane is

or

To find the -intercept we set in this equation and obtain . Similarly, 
the -intercept is 4 and the -intercept is 3. This enables us to sketch the portion of the
plane that lies in the first octant (see Figure 7). M

By collecting terms in Equation 7 as we did in Example 4, we can rewrite the equation
of a plane as

where . Equation 8 is called a linear equation in , , and .
Conversely, it can be shown that if , , and are not all 0, then the linear equation (8) rep-
resents a plane with normal vector . (See Exercise 77.)

EXAMPLE 5 Find an equation of the plane that passes through the points ,
, and .

SOLUTION The vectors and corresponding to PQ
l

and PR
l

are

b � �4, �1, �2 �a � �2, �4, 4 �

ba

R�5, 2, 0�Q�3, �1, 6�
P�1, 3, 2�

�a, b, c�
cba

zyxd � ��ax0 � by0 � cz0 �

ax � by � cz � d � 08

zy
x � 6y � z � 0x

 2x � 3y � 4z � 12

 2�x � 2� � 3�y � 4� � 4�z � 1� � 0

z0 � �1y0 � 4x0 � 2c � 4b � 3a � 2

n � �2, 3, 4 �
�2, 4, �1�V

n � �a, b, c�
P0�x0, y0, z0 �

a�x � x0 � � b�y � y0 � � c�z � z0 � � 07

�a, b, c� � �x � x0, y � y0, z � z0 � � 0

r0 � �x0, y0, z0 �
r � �x, y, z �n � �a, b, c�

n � r � n � r06

n � �r � r0 � � 05

r � r0
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Since both and lie in the plane, their cross product is orthogonal to the plane
and can be taken as the normal vector. Thus

With the point and the normal vector , an equation of the plane is

or M

EXAMPLE 6 Find the point at which the line with parametric equations ,
, intersects the plane .

SOLUTION We substitute the expressions for , , and from the parametric equations into
the equation of the plane:

This simplifies to , so . Therefore the point of intersection occurs
when the parameter value is . Then , ,

and so the point of intersection is M

Two planes are parallel if their normal vectors are parallel. For instance, the planes
and are parallel because their normal vectors are

and and . If two planes are not parallel, then
they intersect in a straight line and the angle between the two planes is defined as the acute
angle between their normal vectors (see angle in Figure 9).

EXAMPLE 7
(a) Find the angle between the planes and .
(b) Find symmetric equations for the line of intersection of these two planes.

SOLUTION
(a) The normal vectors of these planes are

and so, if is the angle between the planes, Corollary 12.3.6 gives

(b) We first need to find a point on . For instance, we can find the point where the line
intersects the -plane by setting in the equations of both planes. This gives the
equations and , whose solution is , . So the point

lies on .L�1, 0, 0�
y � 0x � 1x � 2y � 1x � y � 1

z � 0xy
L

 � � cos�1� 2

s42 � � 72�

 cos � �
n1 � n2

	 n1 	 	 n2 	 �
1�1� � 1��2� � 1�3�

s1 � 1 � 1 
s1 � 4 � 9 �

2

s42 

�

n2 � �1, �2, 3 �n1 � �1, 1, 1 �

L
x � 2y � 3z � 1x � y � z � 1

V

�

n2 � 2n1n2 � �2, 4, �6 �n1 � �1, 2, �3 �
2x � 4y � 6z � 3x � 2y � 3z � 4

��4, 8, 3�.z � 5 � 2 � 3
y � �4��2� � 8x � 2 � 3��2� � �4t � �2

t � �2�10t � 20

4�2 � 3t� � 5��4t� � 2�5 � t� � 18

zyx

4x � 5y � 2z � 18z � 5 � ty � �4t
x � 2 � 3t

 6x � 10y � 7z � 50

 12�x � 1� � 20�y � 3� � 14�z � 2� � 0

nP�1, 3, 2�

n � a � b � 	 i
2

4

j
�4

�1

k
4

�2 	 � 12 i � 20 j � 14 k

a � bba
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N Figure 8 shows the portion of the plane in
Example 5 that is enclosed by triangle .PQR
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Now we observe that, since lies in both planes, it is perpendicular to both of the
normal vectors. Thus a vector parallel to is given by the cross product

and so the symmetric equations of can be written as

M

Since a linear equation in , , and represents a plane and two nonparallel
planes intersect in a line, it follows that two linear equations can represent a line. The
points that satisfy both and 
lie on both of these planes, and so the pair of linear equations represents the line of inter-
section of the planes (if they are not parallel). For instance, in Example 7 the line was
given as the line of intersection of the planes and . The
symmetric equations that we found for could be written as

which is again a pair of linear equations. They exhibit as the line of intersection of the
planes and . (See Figure 11.)

In general, when we write the equations of a line in the symmetric form

we can regard the line as the line of intersection of the two planes

EXAMPLE 8 Find a formula for the distance from a point to the 
plane .

SOLUTION Let be any point in the given plane and let be the vector
corresponding to P PA. Then

From Figure 12 you can see that the distance from to the plane is equal to the
absolute value of the scalar projection of onto the normal vector . 
(See Section 12.3.) Thus

 � 	 �ax1 � by1 � cz1� � �ax0 � by0 � cz0 � 	
sa 2 � b 2 � c 2 

 � 	 a�x1 � x0 � � b�y1 � y0 � � c�z1 � z0 � 	
sa 2 � b 2 � c 2 

 D � 	 compn b 	 � 	 n � b 	
	 n 	

n � �a, b, c�b
P1D

b � �x1 � x0, y1 � y0, z1 � z0 �
10

bP0�x0, y0, z0 �

ax � by � cz � d � 0
P1�x1, y1, z1�D

y � y0

b
�

z � z0

c
and

x � x0

a
�

y � y0

b

x � x0

a
�

y � y0

b
�

z � z0

c

y
��2� � z
��3��x � 1�
5 � y
��2�
L

y

�2
�

z

�3
and

x � 1

5
�

y

�2

L
x � 2y � 3z � 1x � y � z � 1

L

a2x � b2y � c2z � d2 � 0a1x � b1y � c1z � d1 � 0�x, y, z�

zyxNOTE

x � 1

5
�

 y

�2
�

z

�3

L

v � n1 � n2 � 	 i
1

1

j
1

�2

k
1

3 	 � 5 i � 2 j � 3 k

Lv
L
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N Another way to find the line of intersection is
to solve the equations of the planes for two of
the variables in terms of the third, which can be
taken as the parameter.
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Since lies in the plane, its coordinates satisfy the equation of the plane and so we
have . Thus the formula for can be written as

M

EXAMPLE 9 Find the distance between the parallel planes 
and .

SOLUTION First we note that the planes are parallel because their normal vectors
and are parallel. To find the distance between the planes, 

we choose any point on one plane and calculate its distance to the other plane. In par-
ticular, if we put in the equation of the first plane, we get and so

is a point in this plane. By Formula 9, the distance between and the
plane is

So the distance between the planes is . M

EXAMPLE 10 In Example 3 we showed that the lines

are skew. Find the distance between them.

SOLUTION Since the two lines and are skew, they can be viewed as lying on two 
parallel planes and . The distance between and is the same as the distance
between and , which can be computed as in Example 9. The common normal 
vector to both planes must be orthogonal to both (the direction of )
and (the direction of ). So a normal vector is

If we put in the equations of , we get the point on and so an equa-
tion for is

If we now set in the equations for , we get the point on . So 
the distance between and is the same as the distance from to

. By Formula 9, this distance is

MD � 	 13�1� � 6��2� � 5�4� � 3 	
s132 � ��6�2 � ��5�2 

�
8

s230 � 0.53

13x � 6y � 5z � 3 � 0
�1, �2, 4�L2L1

P1�1, �2, 4�L1t � 0

13x � 6y � 5z � 3 � 0or13�x � 0� � 6�y � 3� � 5�z � 3� � 0

P2

L2�0, 3, �3�L2s � 0

n � v1 � v2 � 	 i
1

2

j
3

1

k
�1

4 	 � 13 i � 6 j � 5k

L2v2 � �2, 1, 4 �
L1v1 � �1, 3, �1 �

P2P1

L2L1P2P1

L2L1

 L2: x � 2s  y � 3 � s  z � �3 � 4s

 L1: x � 1 � t y � �2 � 3t z � 4 � t

s3 
6

D � 	 5(1
2 ) � 1�0� � 1�0� � 1 	
s52 � 12 � ��1�2 

�
3
2

3s3 �
s3 

6

5x � y � z � 1 � 0
(1

2, 0, 0)( 1
2, 0, 0)

10x � 5y � z � 0

D�5, 1, �1 ��10, 2, �2 �

5x � y � z � 1
10x � 2y � 2z � 5

D � 	 ax1 � by1 � cz1 � d 	
sa 2 � b 2 � c 2 

9

Dax0 � by0 � cz0 � d � 0
P0
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16. (a) Find parametric equations for the line through that
is perpendicular to the plane .

(b) In what points does this line intersect the coordinate
planes?

17. Find a vector equation for the line segment from 
to .

18. Find parametric equations for the line segment from 
to .

19–22 Determine whether the lines and are parallel, skew, or
intersecting. If they intersect, find the point of intersection.

: , ,

: , ,

20. : , ,

: , ,

21. :

:

22. :

:

23–38 Find an equation of the plane.

23. The plane through the point and perpendicular to the
vector 

24. The plane through the point and with normal 
vector 

25. The plane through the point and with normal 
vector 

26. The plane through the point and perpendicular to
the line , , 

27. The plane through the origin and parallel to the plane

28. The plane through the point and parallel to the
plane 

29. The plane through the point and parallel to the plane

30. The plane that contains the line , , 
and is parallel to the plane 

The plane through the points , , and 

32. The plane through the origin and the points 
and �5, 1, 3�

�2, �4, 6�

�1, 1, 0��1, 0, 1��0, 1, 1�31.

2x � 4y � 8z � 17
z � 8 � ty � tx � 3 � 2t

3x � 7z � 12
�4, �2, 3�

x � y � z � 2 � 0
��1, 6, �5�

2x � y � 3z � 1

z � 4 � 3ty � 2tx � 1 � t
��2, 8, 10�

i � j � k
�1, �1, 1�

j � 2k
�4, 0, �3�

��2, 1, 5�
�6, 3, 2�

x � 2

1
�

y � 6

�1
�

z � 2

3
L2

x � 1

2
�

y � 3

2
�

z � 2

�1
L1

x � 3

�4
�

y � 2

�3
�

z � 1

2
L2

x

1
�

y � 1

2
�

z � 2

3
L1

z � 1 � 3sy � 4 � sx � �1 � sL2

z � 2 � ty � 3tx � 1 � 2tL1

z � sy � 4 � 3sx � 1 � 2sL2

z � �3ty � 1 � 9tx � �6tL119.

L2L1

�5, 6, �3�
�10, 3, 1�

�4, 6, 1�
�2, �1, 4�

x � y � 3z � 7
�2, 4, 6�1. Determine whether each statement is true or false.

(a) Two lines parallel to a third line are parallel.
(b) Two lines perpendicular to a third line are parallel.
(c) Two planes parallel to a third plane are parallel.
(d) Two planes perpendicular to a third plane are parallel.
(e) Two lines parallel to a plane are parallel.
(f) Two lines perpendicular to a plane are parallel.
(g) Two planes parallel to a line are parallel.
(h) Two planes perpendicular to a line are parallel.
(i) Two planes either intersect or are parallel.
( j) Two lines either intersect or are parallel.
(k) A plane and a line either intersect or are parallel.

2–5 Find a vector equation and parametric equations for the line.

2. The line through the point and parallel to the 
vector 

3. The line through the point and parallel to the 
vector 

4. The line through the point and parallel to the line
, , 

The line through the point (1, 0, 6) and perpendicular to the
plane 

6–12 Find parametric equations and symmetric equations for the
line.

6. The line through the origin and the point 

7. The line through the points and 

8. The line through the points and 

The line through the points and 

10. The line through and perpendicular to both 
and 

11. The line through and parallel to the line

12. The line of intersection of the planes 
and 

Is the line through and parallel to the
line through and ?

14. Is the line through and perpendicular to the
line through and ?

15. (a) Find symmetric equations for the line that passes through
the point and is parallel to the vector

.
(b) Find the points in which the required line in part (a) inter-

sects the coordinate planes.

��1, 2, �3 �
�1, �5, 6�

�5, 1, 4���3, 2, 0�
�2, 5, 3��4, 1, �1�

�5, 3, 14��10, 18, 4�
��2, 0 �3���4, �6, 1�13.

x � z � 0
x � y � z � 1

x � 2 � 1
2 y � z � 3

�1, �1, 1�

j � k
i � j�2, 1, 0�

�2, 1, �3�(0, 12 , 1)9.

�2, 4, 5��6, 1, �3�

��4, 3, 0��1, 3, 2�

�1, 2, 3�

x � 3y � z � 5
5.

z � 3 � 9ty � 6 � 3tx � �1 � 2t
�0, 14, �10�

3 i � 2 j � k
�2, 2.4, 3.5�

�1, 3, �2
3 �

�6, �5, 2�

EXERCISES12.5
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57–58 Find symmetric equations for the line of intersection of the
planes.

57. ,

58. ,

59. Find an equation for the plane consisting of all points that are
equidistant from the points and .

60. Find an equation for the plane consisting of all points that are
equidistant from the points and .

Find an equation of the plane with -intercept , -intercept ,
and -intercept .

62. (a) Find the point at which the given lines intersect:

(b) Find an equation of the plane that contains these lines.

63. Find parametric equations for the line through the point
that is parallel to the plane and 

perpendicular to the line , , .

64. Find parametric equations for the line through the point
that is perpendicular to the line , 

, and intersects this line.

65. Which of the following four planes are parallel? Are any of
them identical?

66. Which of the following four lines are parallel? Are any of them
identical?

, ,

67–68 Use the formula in Exercise 43 in Section 12.4 to find the
distance from the point to the given line.

67. ; , ,

68. ; , ,

69–70 Find the distance from the point to the given plane.

69. ,

70. ,

71–72 Find the distance between the given parallel planes.

71. , 4x � 6y � 2z � 32x � 3y � z � 4

x � 2y � 4z � 8��6, 3, 5�

3x � 2y � 6z � 5�1, �2, 4�

z � 3 � ty � 6 � 2tx � 2t�0, 1, 3�

z � 4 � 3ty � 3 � 2tx � 1 � t�4, 1, �2�

L4: r � �2, 1, �3 � � t �2, 2, �10 �

L3: x � 1 � t, y � 4 � t, z � 1 � t

L2: x � 1 � y � 2 � 1 � z

z � 2 � 5ty � tL1: x � 1 � t

 P3: �6x � 3y � 9z � 5 P4: z � 2x � y � 3

 P1:  4x � 2y � 6z � 3  P2:  4x � 2y � 2z � 6

z � 2ty � 1 � t
x � 1 � t�0, 1, 2�

z � 2ty � 1 � tx � 1 � t
x � y � z � 2�0, 1, 2�

 r � �2, 0, 2 � � s��1, 1, 0 �

 r � �1, 1, 0 � � t �1, �1, 2 �

cz
byax61.

��6, 3, 1��2, 5, 5�

�3, 4, 0��1, 0, �2�

z � 4x � 3y � 5z � 2x � y � 5

4x � y � z � 65x � 2y � 2z � 1

33. The plane through the points , , and

34. The plane that passes through the point and contains
the line , , 

35. The plane that passes through the point and contains
the line , , 

36. The plane that passes through the point and 
contains the line with symmetric equations 

37. The plane that passes through the point and contains
the line of intersection of the planes and

38. The plane that passes through the line of intersection of the
planes and and is perpendicular to the
plane 

39–42 Use intercepts to help sketch the plane.

39. 40.

41. 42.

43–45 Find the point at which the line intersects the given plane.

43. , , ;

44. , , ;

45. ;

46. Where does the line through and intersect
the plane ?

47. Find direction numbers for the line of intersection of the planes
and .

48. Find the cosine of the angle between the planes 
and .

49–54 Determine whether the planes are parallel, perpendicular, or
neither. If neither, find the angle between them.

,

50. ,

51. ,

52. ,

53. ,

54. ,

55–56 (a) Find parametric equations for the line of intersection of
the planes and (b) find the angle between the planes.

55. ,

56. , 2x � y � 3z � 33x � 2y � z � 1

x � 2y � 2z � 1x � y � z � 1

2x � y � 2z � 1x � 2y � 2z � 1

8y � 1 � 2x � 4zx � 4y � 2z

x � 6y � 4z � 32x � 3y � 4z � 5

x � y � z � 1x � y � z � 1

3x � 12y � 6z � 12z � 4y � x

�3x � 6y � 7z � 0x � 4y � 3z � 149.

x � 2y � 3z � 1
x � y � z � 0

x � z � 0x � y � z � 1

x � y � z � 6
�4, �2, 2��1, 0, 1�

4x � y � 3z � 8x � y � 1 � 2z

x � 2y � z � 1 � 0z � 2 � 3ty � 4tx � 1 � 2t

x � y � 2z � 9z � 5ty � 2 � tx � 3 � t

6x � 5y � 3z � 156x � 3y � 4z � 6

3x � y � 2z � 62x � 5y � z � 10

x � y � 2z � 1
y � 2z � 3x � z � 1

2x � y � 3z � 1
x � y � z � 2

��1, 2, 1�

x � 2y � 3z
�1, �1, 1�

z � 7 � 4 ty � 3 � 5tx � 4 � 2t
�6, 0, �2�

z � 2 � ty � 1 � tx � 3t
�1, 2, 3�

��1, �2, �3�
�8, 2, 4��3, �1, 2�
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76. Find the distance between the skew lines with para-
metric equations , , , and

, , .

77. If , , and are not all 0, show that the equation
represents a plane and is 

a normal vector to the plane.
Hint: Suppose and rewrite the equation in the form

78. Give a geometric description of each family of planes.
(a) (b)
(c) y cos � � z sin � � 1

x � y � cz � 1x � y � z � c

a�x �
d

a� � b�y � 0� � c�z � 0� � 0

a � 0

�a, b, c�ax � by � cz � d � 0
cba

z � �2 � 6sy � 5 � 15sx � 1 � 2s
z � 2ty � 1 � 6tx � 1 � t

72. ,

Show that the distance between the parallel planes
and is

74. Find equations of the planes that are parallel to the plane
and two units away from it.

75. Show that the lines with symmetric equations and
are skew, and find the distance between

these lines.
x � 1 � y�2 � z�3

x � y � z

x � 2y � 2z � 1

D � 	 d1 � d2 	
sa 2 � b 2 � c 2 

ax � by � cz � d2 � 0ax � by � cz � d1 � 0
73.

9z � 1 � 3x � 6y6z � 4y � 2x

Computer graphics programmers face the same challenge as the great painters of the past: how 
to represent a three-dimensional scene as a flat image on a two-dimensional plane (a screen or a
canvas). To create the illusion of perspective, in which closer objects appear larger than those
farther away, three-dimensional objects in the computer’s memory are projected onto a rect-
angular screen window from a viewpoint where the eye, or camera, is located. The viewing
volume––the portion of space that will be visible––is the region contained by the four planes that
pass through the viewpoint and an edge of the screen window. If objects in the scene extend
beyond these four planes, they must be truncated before pixel data are sent to the screen. These
planes are therefore called clipping planes.

1. Suppose the screen is represented by a rectangle in the -plane with vertices 
and , and the camera is placed at . A line in the scene passes
through the points and . At what points should be clipped
by the clipping planes?

2. If the clipped line segment is projected on the screen window, identify the resulting line
segment.

3. Use parametric equations to plot the edges of the screen window, the clipped line segment,
and its projection on the screen window. Then add sight lines connecting the viewpoint to
each end of the clipped segments to verify that the projection is correct.

4. A rectangle with vertices , , , and
is added to the scene. The line intersects this rectangle. To make the rect-

angle appear opaque, a programmer can use hidden line rendering, which removes portions
of objects that are behind other objects. Identify the portion of that should be removed.L

L�599, 67, 122�
�657, �111, 86��563, 31, 242��621, �147, 206�

L�860, 105, 264��230, �285, 102�
L�1000, 0, 0��0, �400, 600�

�0, �400, 0�yz

PUTTING 3D IN PERSPECTIVEL A B O R AT O R Y
P R O J E C T

CYLINDERS AND QUADRIC SURFACES

We have already looked at two special types of surfaces: planes (in Section 12.5) and
spheres (in Section 12.1). Here we investigate two other types of surfaces: cylinders and
quadric surfaces.

In order to sketch the graph of a surface, it is useful to determine the curves of intersec-
tion of the surface with planes parallel to the coordinate planes. These curves are called
traces (or cross-sections) of the surface.

12.6



CYLINDERS

A cylinder is a surface that consists of all lines (called rulings) that are parallel to a given
line and pass through a given plane curve.

EXAMPLE 1 Sketch the graph of the surface .

SOLUTION Notice that the equation of the graph, , doesn’t involve y. This means that
any vertical plane with equation (parallel to the -plane) intersects the graph in a
curve with equation . So these vertical traces are parabolas. Figure 1 shows how
the graph is formed by taking the parabola in the -plane and moving it in the
direction of the y-axis. The graph is a surface, called a parabolic cylinder, made up of
infinitely many shifted copies of the same parabola. Here the rulings of the cylinder are
parallel to the y-axis. M

We noticed that the variable y is missing from the equation of the cylinder in Exam-
ple 1. This is typical of a surface whose rulings are parallel to one of the coordinate axes.
If one of the variables x, y, or is missing from the equation of a surface, then the surface
is a cylinder.

EXAMPLE 2 Identify and sketch the surfaces.
(a) (b)

SOLUTION
(a) Since is missing and the equations , represent a circle with
radius 1 in the plane , the surface is a circular cylinder whose axis is
the -axis. (See Figure 2.) Here the rulings are vertical lines.

(b) In this case x is missing and the surface is a circular cylinder whose axis is the x-axis.
(See Figure 3.) It is obtained by taking the circle , in the -plane and
moving it parallel to the x-axis.

M

| When you are dealing with surfaces, it is important to recognize that an equa-
tion like represents a cylinder and not a circle. The trace of the cylinder

in the -plane is the circle with equations , .

QUADRIC SURFACES

A quadric surface is the graph of a second-degree equation in three variables , , and .
The most general such equation is

Ax 2 � By 2 � Cz2 � Dxy � Eyz � Fxz � Gx � Hy � Iz � J � 0

zyx

z � 0x 2 � y 2 � 1xyx 2 � y 2 � 1
x 2 � y 2 � 1

NOTE

FIGURE 2    ≈+¥=1 FIGURE 3    ¥+z@=1

z

y

x
0

z

y
x

yzx � 0y 2 � z2 � 1

z
x 2 � y 2 � 1z � k

z � kx 2 � y 2 � 1z

y 2 � z 2 � 1x 2 � y 2 � 1

z

xzz � x 2
z � x 2

xzy � k
z � x 2

z � x 2V
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FIGURE 1

x y

0

z

The surface z=≈ is a  
parabolic cylinder.



where , , are constants, but by translation and rotation it can be brought into
one of the two standard forms

or

Quadric surfaces are the counterparts in three dimensions of the conic sections in the plane.
(See Section 10.5 for a review of conic sections.)

EXAMPLE 3 Use traces to sketch the quadric surface with equation

SOLUTION By substituting , we find that the trace in the xy-plane is ,
which we recognize as an equation of an ellipse. In general, the horizontal trace in the
plane is

which is an ellipse, provided that , that is, .
Similarly, the vertical traces are also ellipses:

Figure 4 shows how drawing some traces indicates the shape of the surface. It’s called an
ellipsoid because all of its traces are ellipses. Notice that it is symmetric with respect to
each coordinate plane; this is a reflection of the fact that its equation involves only even
powers of x, y, and . M

EXAMPLE 4 Use traces to sketch the surface .

SOLUTION If we put , we get , so the -plane intersects the surface in a
parabola. If we put (a constant), we get . This means that if we 
slice the graph with any plane parallel to the -plane, we obtain a parabola that opens
upward. Similarly, if , the trace is , which is again a parabola that
opens upward. If we put , we get the horizontal traces , which we
recognize as a family of ellipses. Knowing the shapes of the traces, we can sketch the
graph in Figure 5. Because of the elliptical and parabolic traces, the quadric surface

is called an elliptic paraboloid.

M

FIGURE 5  
The surface z=4≈+¥  is an elliptic

paraboloid. Horizontal traces are ellipses;
vertical traces are parabolas. x y

0

z

z � 4x 2 � y 2

4x 2 � y 2 � kz � k
z � 4x 2 � k 2y � k

yz
z � y 2 � 4k 2x � k
yzz � y 2x � 0

z � 4x 2 � y 2

z

 x 2 �
z2

4
� 1 �

k 2

9
 y � k �if �3 � k � 3�

 
y 2

9
�

z2

4
� 1 � k 2  x � k �if �1 � k � 1�

�2 � k � 2k 2 � 4

z � kx 2 �
y 2

9
� 1 �

k 2

4

z � k

x 2 � y 2�9 � 1z � 0

x 2 �
y 2

9
�

z2

4
� 1

Ax 2 � By 2 � Iz � 0Ax 2 � By 2 � Cz2 � J � 0

C, . . . , JBA
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FIGURE 4

The ellipsoid ≈+     +     =1
z@

4

y@

9

(0, 3, 0)
0

(0, 0, 2)

(1, 0, 0)

x

y

z



EXAMPLE 5 Sketch the surface .

SOLUTION The traces in the vertical planes are the parabolas , which
open upward. The traces in are the parabolas , which open down-
ward. The horizontal traces are , a family of hyperbolas. We draw the fami-
lies of traces in Figure 6, and we show how the traces appear when placed in their 
correct planes in Figure 7.

In Figure 8 we fit together the traces from Figure 7 to form the surface , 
a hyperbolic paraboloid. Notice that the shape of the surface near the origin resembles
that of a saddle. This surface will be investigated further in Section 14.7 when we dis-
cuss saddle points.

M

EXAMPLE 6 Sketch the surface .

SOLUTION The trace in any horizontal plane is the ellipse

x 2

4
� y 2 � 1 �

k 2

4
z � k

z � k

x 2

4
� y 2 �

z 2

4
� 1

x
y

0

z

FIGURE 8
The surface z=¥-≈ is a

hyperbolic paraboloid.

z � y 2 � x 2

FIGURE 6
Vertical traces are parabolas;
horizontal traces are hyperbolas.
All traces are labeled with the
value of k.

FIGURE 7
Traces moved to their
correct planes

Traces in x=k are z=¥-k@

0

�1

�2

Traces in z=k are ¥-≈=k

_1

1

1

0

_1

Traces in x=k

x

y

z

1

0

_1

Traces in y=k are z=_≈+k@

0

�1

�2

Traces in y=k

1

x
y

    
z

_1
0

Traces in z=k

x
y

z

1

0

_1

z

y

y

x

z

x

y 2 � x 2 � k
z � �x 2 � k 2y � k

z � y 2 � k 2x � k

z � y 2 � x 2V
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In Module 12.6A you can investi-
gate how traces determine the shape of a 
surface.

TEC



but the traces in the - and -planes are the hyperbolas

This surface is called a hyperboloid of one sheet and is sketched in Figure 9. M

The idea of using traces to draw a surface is employed in three-dimensional graphing
software for computers. In most such software, traces in the vertical planes and

are drawn for equally spaced values of , and parts of the graph are eliminated using
hidden line removal. Table 1 shows computer-drawn graphs of the six basic types of
quadric surfaces in standard form. All surfaces are symmetric with respect to the -axis. If
a quadric surface is symmetric about a different axis, its equation changes accordingly.

z

ky � k
x � k

x 2

4
�

z2

4
� 1 y � 0 and y2 �

z2

4
� 1 x � 0

yzxz
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FIGURE 9 

(0, 1, 0)(2, 0, 0)

yx

z

Surface Equation Surface Equation

Ellipsoid Cone

Elliptic Paraboloid Hyperboloid of One Sheet

Hyperbolic Paraboloid Hyperboloid of Two Sheets
z

yx

z

y

x

z

yx

z

y
x

z

yx

z

yx

Horizontal traces are ellipses.

Vertical traces in the planes
and are

hyperbolas if but are
pairs of lines if .k � 0

k � 0
y � kx � k

z 2

c 2 �
x 2

a 2 �
y 2

b 2

All traces are ellipses.

If , the ellipsoid is
a sphere.

a � b � c

x 2

a 2 �
y 2

b 2 �
z 2

c 2 � 1

Horizontal traces are ellipses.

Vertical traces are hyperbolas.

The axis of symmetry
corresponds to the variable
whose coefficient is negative.

x 2

a 2 �
y 2

b 2 �
z 2

c 2 � 1

Horizontal traces are ellipses.

Vertical traces are parabolas.

The variable raised to the
first power indicates the axis
of the paraboloid.

z

c
�

x 2

a 2 �
y 2

b 2

Horizontal traces in are
ellipses if or .

Vertical traces are hyperbolas.

The two minus signs indicate
two sheets.

k � �ck � c
z � k

�
x 2

a 2 �
y 2

b 2 �
z 2

c 2 � 1

Horizontal traces are
hyperbolas.

Vertical traces are parabolas.

The case where is
illustrated.

c � 0

z

c
�

x 2

a 2 �
y 2

b 2

TABLE 1 Graphs of quadric surfaces



EXAMPLE 7 Identify and sketch the surface .

SOLUTION Dividing by , we first put the equation in standard form:

Comparing this equation with Table 1, we see that it represents a hyperboloid of two
sheets, the only difference being that in this case the axis of the hyperboloid is the 
-axis. The traces in the - and -planes are the hyperbolas

The surface has no trace in the -plane, but traces in the vertical planes for
are the ellipses

which can be written as

These traces are used to make the sketch in Figure 10. M

EXAMPLE 8 Classify the quadric surface .

SOLUTION By completing the square we rewrite the equation as

Comparing this equation with Table 1, we see that it represents an elliptic paraboloid.
Here, however, the axis of the paraboloid is parallel to the -axis, and it has been shifted
so that its vertex is the point . The traces in the plane are the
ellipses

The trace in the -plane is the parabola with equation , . The
paraboloid is sketched in Figure 11.

M

FIGURE 11
≈+2z@-6x-y+10=0

0

y

x
(3, 1, 0)

z

z � 0y � 1 � �x � 3�2xy

y � k�x � 3�2 � 2z2 � k � 1

y � k �k � 1��3, 1, 0�
y

y � 1 � �x � 3�2 � 2z2

x 2 � 2z2 � 6x � y � 10 � 0

y � k
x 2

k 2

4
� 1

�
z 2

2� k 2

4
� 1� � 1

y � kx 2 �
z2

2
�

k 2

4
� 1

	 k 	 � 2
y � kxz

 x � 0
y 2

4
�

z2

2
� 1and z � 0�x 2 �

 y 2

4
� 1

yzxyy

�x 2 �
y 2

4
�

z2

2
� 1

�4

4x 2 � y 2 � 2z2 � 4 � 0V
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FIGURE 10
4≈-¥+2z@+4=0

0

z

y

x (0, 2, 0)

(0, _2, 0)

In Module 12.6B you can see how
changing , , and in Table 1 affects the
shape of the quadric surface.

cba
TEC



APPLICATIONS OF QUADRIC SURFACES

Examples of quadric surfaces can be found in the world around us. In fact, the world itself
is a good example. Although the earth is commonly modeled as a sphere, a more accurate
model is an ellipsoid because the earth’s rotation has caused a flattening at the poles. (See
Exercise 47.)

Circular paraboloids, obtained by rotating a parabola about its axis, are used to collect
and reflect light, sound, and radio and television signals. In a radio telescope, for instance,
signals from distant stars that strike the bowl are reflected to the receiver at the focus and
are therefore amplified. (The idea is explained in Problem 18 on page 268.) The same prin-
ciple applies to microphones and satellite dishes in the shape of paraboloids.

Cooling towers for nuclear reactors are usually designed in the shape of hyperboloids
of one sheet for reasons of structural stability. Pairs of hyperboloids are used to transmit
rotational motion between skew axes. (The cogs of gears are the generating lines of the
hyperboloids. See Exercise 49.)
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A satellite dish reflects signals to 
the focus of a paraboloid.

Nuclear reactors have cooling towers 
in the shape of hyperboloids.

Hyperboloids produce gear transmission.

5. 6.

7. 8.

(a) Find and identify the traces of the quadric surface
and explain why the graph looks like the

graph of the hyperboloid of one sheet in Table 1.
(b) If we change the equation in part (a) to ,

how is the graph affected?
(c) What if we change the equation in part (a) to

?x 2 � y2 � 2y � z2 � 0

x 2 � y2 � z2 � 1

x 2 � y2 � z2 � 1
9.

x 2 � y 2 � 1z � cos x

yz � 4x � y 2 � 01. (a) What does the equation represent as a curve in ?
(b) What does it represent as a surface in ?
(c) What does the equation represent?

2. (a) Sketch the graph of as a curve in .
(b) Sketch the graph of as a surface in .
(c) Describe and sketch the surface .

3–8 Describe and sketch the surface.

3. 4. z � 4 � x 2y 2 � 4z2 � 4

z � e y
�3y � e x

�2y � e x

z � y 2
�3

�2y � x 2

EXERCISES12.6
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29–36 Reduce the equation to one of the standard forms, classify
the surface, and sketch it.

29. 30.

31. 32.

33.

34.

35.

36.

; 37–40 Use a computer with three-dimensional graphing software
to graph the surface. Experiment with viewpoints and with domains
for the variables until you get a good view of the surface.

37. 38.

39. 40.

41. Sketch the region bounded by the surfaces 
and for .

42. Sketch the region bounded by the paraboloids 
and .

43. Find an equation for the surface obtained by rotating the
parabola about the -axis.

44. Find an equation for the surface obtained by rotating the line
about the -axis.

45. Find an equation for the surface consisting of all points that 
are equidistant from the point and the plane .
Identify the surface.

46. Find an equation for the surface consisting of all points for
which the distance from to the -axis is twice the distance
from to the -plane. Identify the surface.

47. Traditionally, the earth’s surface has been modeled as a sphere,
but the World Geodetic System of 1984 (WGS-84) uses an
ellipsoid as a more accurate model. It places the center of the
earth at the origin and the north pole on the positive -axis. 
The distance from the center to the poles is 6356.523 km and
the distance to a point on the equator is 6378.137 km.
(a) Find an equation of the earth’s surface as used by 

WGS-84.
(b) Curves of equal latitude are traces in the planes .

What is the shape of these curves?
(c) Meridians (curves of equal longitude) are traces in 

planes of the form . What is the shape of these
meridians?

48. A cooling tower for a nuclear reactor is to be constructed in 
the shape of a hyperboloid of one sheet (see the photo on 
page 810). The diameter at the base is 280 m and the minimum 

y � mx

z � k

z

yzP
xP

P

x � 1��1, 0, 0�

xx � 3y

yy � x 2

z � 2 � x 2 � y 2
z � x 2 � y 2

1 � z � 2x 2 � y 2 � 1
z � sx 2 � y 2 

x 2 � 6x � 4y 2 � z � 0�4x 2 � y 2 � z2 � 0

x 2 � y 2 � z � 0�4x 2 � y 2 � z2 � 1

x 2 � y 2 � z2 � 2x � 2y � 4z � 2 � 0

x 2 � y 2 � z2 � 4x � 2y � 2z � 4 � 0

4y 2 � z2 � x � 16y � 4z � 20 � 0

4x 2 � y 2 � 4z2 � 4y � 24z � 36 � 0

4x � y 2 � 4z2 � 0x � 2y 2 � 3z2

x 2 � 2y 2 � 3z2z2 � 4x 2 � 9y2 � 36

10. (a) Find and identify the traces of the quadric surface
and explain why the graph looks like

the graph of the hyperboloid of two sheets in Table 1.
(b) If the equation in part (a) is changed to ,

what happens to the graph? Sketch the new graph.

11–20 Use traces to sketch and identify the surface.

11. 12.

13. 14.

15. 16.

17. 18.

20.

21–28 Match the equation with its graph (labeled I–VIII). Give
reasons for your choices.

21. 22.

23. 24.

25. 26.

27. 28. y � x 2 � z2x 2 � 2z2 � 1

y 2 � x 2 � 2z2y � 2x 2 � z2

�x 2 � y 2 � z2 � 1x 2 � y 2 � z2 � 1

9x 2 � 4y 2 � z2 � 1x 2 � 4y 2 � 9z2 � 1

x � y 2 � z2y � z2 � x 219.

4x 2 � 16y 2 � z2 � 1636x 2 � y 2 � 36z2 � 36

4x 2 � 9y 2 � z � 0�x 2 � 4y 2 � z2 � 4

25x 2 � 4y 2 � z2 � 100x 2 � y 2 � 4z 2

9x 2 � y 2 � z2 � 0x � y 2 � 4z2

x 2 � y2 � z2 � 1

�x 2 � y2 � z2 � 1

I

III

V

z

yx

z

y
x

z

y
x

z

y

x

z

yx

z

y
x

z

yx

z

y

x

II

IV

VI

VII VIII



generating lines. The only other quadric surfaces that are ruled
surfaces are cylinders, cones, and hyperboloids of one sheet.)

50. Show that the curve of intersection of the surfaces
and 

lies in a plane.

; 51. Graph the surfaces and on a common
screen using the domain , and observe the
curve of intersection of these surfaces. Show that the projection
of this curve onto the -plane is an ellipse.xy

	 y 	 � 1.2	 x 	 � 1.2
z � 1 � y 2z � x 2 � y 2

2x 2 � 4y 2 � 2z2 � 5y � 0x 2 � 2y 2 � z2 � 3x � 1

diameter, 500 m above the base, is 200 m. Find an equation 
for the tower.

49. Show that if the point lies on the hyperbolic paraboloid
, then the lines with parametric equations

, , and ,
, both lie entirely on this parabo-

loid. (This shows that the hyperbolic paraboloid is what is
called a ruled surface; that is, it can be generated by the
motion of a straight line. In fact, this exercise shows that
through each point on the hyperbolic paraboloid there are two 

z � c � 2�b � a�ty � b � t
x � a � tz � c � 2�b � a�ty � b � tx � a � t

z � y 2 � x 2
�a, b, c�
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REVIEW

C O N C E P T  C H E C K

12

11. How do you find a vector perpendicular to a plane?

12. How do you find the angle between two intersecting planes?

13. Write a vector equation, parametric equations, and symmetric
equations for a line.

14. Write a vector equation and a scalar equation for a plane.

15. (a) How do you tell if two vectors are parallel?
(b) How do you tell if two vectors are perpendicular?
(c) How do you tell if two planes are parallel?

16. (a) Describe a method for determining whether three points 
, , and lie on the same line.

(b) Describe a method for determining whether four points 
, , , and lie in the same plane.

17. (a) How do you find the distance from a point to a line?
(b) How do you find the distance from a point to a plane?
(c) How do you find the distance between two lines?

18. What are the traces of a surface? How do you find them?

19. Write equations in standard form of the six types of quadric
surfaces.

SRQP

RQP

1. What is the difference between a vector and a scalar?

2. How do you add two vectors geometrically? How do you add
them algebraically?

3. If a is a vector and c is a scalar, how is ca related to a
geometrically? How do you find ca algebraically?

4. How do you find the vector from one point to another?

5. How do you find the dot product of two vectors if you
know their lengths and the angle between them? What if you
know their components?

6. How are dot products useful?

7. Write expressions for the scalar and vector projections of b
onto a. Illustrate with diagrams.

8. How do you find the cross product a 	 b of two vectors if you
know their lengths and the angle between them? What if you
know their components?

9. How are cross products useful?

10. (a) How do you find the area of the parallelogram determined
by a and b?

(b) How do you find the volume of the parallelepiped
determined by a, b, and c?

a � b

Determine whether the statement is true or false. If it is true, explain why.
If it is false, explain why or give an example that disproves the statement.

1. For any vectors and in , .

2. For any vectors and in , .

3. For any vectors and in , .

4. For any vectors and in and any scalar ,
.

5. For any vectors and in and any scalar ,
.k�u 	 v� � �ku� 	 v

kV3vu

k�u � v� � �ku� � v
kV3vu

	 u 	 v 	 � 	 v 	 u 	V3vu

u 	 v � v 	 uV3vu

u � v � v � uV3vu

6. For any vectors , , and in ,
.

7. For any vectors , , and in , 
.

8. For any vectors , , and in ,
.

9. For any vectors and in , .

10. For any vectors and in , .�u � v� 	 v � u 	 vV3vu

�u 	 v� � u � 0V3vu

u 	 �v 	 w� � �u 	 v� 	 w
V3wvu

u � �v 	 w� � �u 	 v� � w
V3wvu

�u � v� 	 w � u 	 w � v 	 w
V3wvu

T R U E - F A L S E  Q U I Z
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15. If , then or .

16. If , then or .

17. If , and , then or .

18. If and are in , then .	 u � v 	 � 	 u 	 	 v 	V3vu

v � 0u � 0u 	 v � 0u � v � 0

v � 0u � 0u 	 v � 0

v � 0u � 0u � v � 011. The cross product of two unit vectors is a unit vector.

12. A linear equation represents a line 
in space.

13. The set of points is a circle.

14. If and , then .u � v � �u1v1, u2v2 �v � �v1, v2 �u � �u1, u2 �

{�x, y, z� 	 x 2 � y 2 � 1}

Ax � By � Cz � D � 0

1. (a) Find an equation of the sphere that passes through the point
and has center .

(b) Find the curve in which this sphere intersects the 
-plane.

(c) Find the center and radius of the sphere

2. Copy the vectors in the figure and use them to draw each of the
following vectors.
(a) (b) (c) (d)

3. If u and v are the vectors shown in the figure, find and
. Is u 	 v directed into the page or out of it?

4. Calculate the given quantity if

(a) (b)
(c) (d)
(e) (f)
(g) (h)
(i) ( j)
(k) The angle between and (correct to the nearest degree)

5. Find the values of such that the vectors and
are orthogonal.

6. Find two unit vectors that are orthogonal to both 
and .i � 2 j � 3k

j � 2k

�2x, 4, x�
�3, 2, x�x

ba
proja bcomp a b
a 	 �b 	 c�c 	 c
a � �b 	 c�	 b 	 c 	
a 	 ba � b
	 b 	2a � 3b

c � j � 5kb � 3 i � 2 j � ka � i � j � 2k

45°

|v |=3

|u |=2

	 u 	 v 	
u � v

a
b

2a � b�
1
2 aa � ba � b

x 2 � y2 � z2 � 8x � 2y � 6z � 1 � 0

yz

��1, 2, 1��6, �2, 3�
7. Suppose that . Find

(a) (b)

(c) (d)

8. Show that if , , and are in , then

9. Find the acute angle between two diagonals of a cube.

10. Given the points , , , and
, find the volume of the parallelepiped with adjacent

edges , , and .

11. (a) Find a vector perpendicular to the plane through the points
, , and .

(b) Find the area of triangle .

12. A constant force moves an object along
the line segment from to . Find the work done
if the distance is measured in meters and the force in newtons.

13. A boat is pulled onto shore using two ropes, as shown in the
diagram. If a force of 255 N is needed, find the magnitude of
the force in each rope.

14. Find the magnitude of the torque about if a 50-N force is
applied as shown.

P

40 cm

50 N
30°

P

20°

30°

255 N

�5, 3, 8��1, 0, 2�
F � 3 i � 5 j � 10k

ABC
C�1, 4, 3�B�2, 0, �1�A�1, 0, 0�

ADACAB
D�0, 3, 2�

C��1, 1, 4�B�2, 3, 0�A�1, 0, 1�

�a 	 b� � 
�b 	 c� 	 �c 	 a�� � 
a � �b 	 c��2

V3cba

�u 	 v� � vv � �u 	 w�
u � �w 	 v��u 	 v� � w

u � �v 	 w� � 2

E X E R C I S E S
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(b) Find, correct to the nearest degree, the angle between these
planes.

25. Find an equation of the plane through the line of intersection of
the planes and and perpendicular to the
plane .

26. (a) Find an equation of the plane that passes through the points
, , and .

(b) Find symmetric equations for the line through that is 
perpendicular to the plane in part (a).

(c) A second plane passes through and has normal
vector . Show that the acute angle between the
planes is approximately .

(d) Find parametric equations for the line of intersection of the
two planes.

27. Find the distance between the planes 
and .

28–36 Identify and sketch the graph of each surface.

28. 29.

30. 31.

32. 33.

34.

35.

36.

37. An ellipsoid is created by rotating the ellipse 
about the -axis. Find an equation of the ellipsoid.

38. A surface consists of all points such that the distance from 
to the plane is twice the distance from to the point

. Find an equation for this surface and identify it.�0, �1, 0�
Py � 1

PP

x
4x 2 � y 2 � 16

x � y2 � z2 � 2y � 4z � 5

4x 2 � 4y 2 � 8y � z2 � 0

y 2 � z2 � 1 � x 2

�4x 2 � y 2 � 4z2 � 44x � y � 2z � 4

x 2 � y 2 � 4z2y � z2

x � zx � 3

3x � y � 4z � 24
3x � y � 4z � 2

43�
�2, �4, �3 �

�2, 0, 4�

B
C�1, 3, �4�B��1, �1, 10�A�2, 1, 1�

x � y � 2z � 1
y � 2z � 3x � z � 1

15–17 Find parametric equations for the line.

15. The line through and 

16. The line through and parallel to the line

17. The line through and perpendicular to the 
plane 

18–20 Find an equation of the plane.

18. The plane through and parallel to 

19. The plane through , , and 

20. The plane through that contains the line 
, , 

21. Find the point in which the line with parametric equations
, , intersects the plane

.

22. Find the distance from the origin to the line 
, , .

23. Determine whether the lines given by the symmetric 
equations

and

are parallel, skew, or intersecting.

24. (a) Show that the planes and
are neither parallel nor perpendicular.2x � 3y � 4z � 5

x � y � z � 1

 
x � 1

6
�

y � 3

�1
�

z � 5

2

 
x � 1

2
�

y � 2

3
�

z � 3

4

z � �1 � 2ty � 2 � tx � 1 � t

2x � y � z � 2
z � 4ty � 1 � 3tx � 2 � t

z � 1 � 3ty � 3 � tx � 2t
�1, 2, �2�

�6, 3, 1��4, 0, 2��3, �1, 1�

x � 4y � 3z � 1�2, 1, 0�

2x � y � 5z � 12
��2, 2, 4�

1
3�x � 4� � 1

2 y � z � 2
�1, 0, �1�

�1, 1, 5��4, �1, 2�
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1. Each edge of a cubical box has length 1 m. The box contains nine spherical balls with the
same radius . The center of one ball is at the center of the cube and it touches the other eight
balls. Each of the other eight balls touches three sides of the box. Thus the balls are tightly
packed in the box. (See the figure.) Find . (If you have trouble with this problem, read about
the problem-solving strategy entitled Use Analogy on page 76.)

2. Let be a solid box with length , width , and height . Let be the set of all points that
are a distance at most 1 from some point of . Express the volume of in terms of , , 
and .

3. Let be the line of intersection of the planes and , 
where is a real number.
(a) Find symmetric equations for .
(b) As the number varies, the line sweeps out a surface . Find an equation for the curve

of intersection of with the horizontal plane (the trace of in the plane ).
(c) Find the volume of the solid bounded by and the planes and .

4. A plane is capable of flying at a speed of 180 km�h in still air. The pilot takes off from an
airfield and heads due north according to the plane’s compass. After 30 minutes of flight time,
the pilot notices that, due to the wind, the plane has actually traveled 80 km at an angle 5° east
of north.
(a) What is the wind velocity?
(b) In what direction should the pilot have headed to reach the intended destination?

5. Suppose a block of mass is placed on an inclined plane, as shown in the figure. The block’s
descent down the plane is slowed by friction; if is not too large, friction will prevent the
block from moving at all. The forces acting on the block are the weight , where 
( is the acceleration due to gravity); the normal force (the normal component of the reac-
tionary force of the plane on the block), where ; and the force F due to friction,
which acts parallel to the inclined plane, opposing the direction of motion. If the block is at
rest and is increased, must also increase until ultimately reaches its maximum,
beyond which the block begins to slide. At this angle , it has been observed that is
proportional to . Thus, when is maximal, we can say that , where is 
called the coefficient of static friction and depends on the materials that are in contact.
(a) Observe that N � F � W � 0 and deduce that .
(b) Suppose that, for , an additional outside force is applied to the block, horizontally

from the left, and let . If is small, the block may still slide down the plane; if 
is large enough, the block will move up the plane. Let be the smallest value of that
allows the block to remain motionless (so that is maximal).

By choosing the coordinate axes so that lies along the -axis, resolve each force into
components parallel and perpendicular to the inclined plane and show that

and

(c) Show that

Does this equation seem reasonable? Does it make sense for ? As ?
Explain.

(d) Let be the largest value of that allows the block to remain motionless. (In which
direction is heading?) Show that

Does this equation seem reasonable? Explain.

hmax � mt tan�� � �s�

F
hhmax

� l 90�� � �s

hmin � mt tan�� � �s�

hmin cos � � �s n � mt sin �hmin sin � � mt cos � � n

xF
� F �

hhmin

hh� H � � h
H� � �s

�s � tan��s�

�s� F � � �s n� F �n
� F ��s

� F �� F ��

� N � � n
Nt

� W � � mtW
�

m

z � 1z � 0S
z � tSz � tS

SLc
L

c
x � cy � cz � �1cx � y � z � cL

H
WLSB

SHWLB

r

r

P R O B L E M S  P L U S

1 m

1 m
1 m1 m

F IGURE FOR PROBLEM 1

N F

W

F IGURE FOR PROBLEM 5
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