BC:  Q403 CHAPTER 10 – LESSON 1 (10.1)

DEF:  A plane curve is a set C of ordered pairs
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, where
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are continuous functions on an interval I.

DEF:  Let C be the curve consisting of all ordered pairs
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are continuous on an interval I.  The equations
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, for t in I, are parametric equations for C with parameter t.
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THM:  The length of a smooth curve  
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from x = a and x = b is given by 

THM:  If a smooth curve C is given parametrically by 
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, and if C does not intersect itself, except possibly for t = a and t = b, then the length L of C is 

THM:  Let a smooth curve C be given by 
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, and suppose C does not intersect itself, except possibly for t = a and t = b.  If 
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throughout [a, b], then the area S of the surface of revolution obtained by revolving C about the x-axis is 
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THM:  Let a smooth curve C be given by 
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, and suppose C does not intersect itself, except possibly for t = a and t = b.  If 
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throughout [a, b], then the area S of the surface of revolution obtained by revolving C about the y-axis is 
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Example 1:  Let C be the curve that has parametrization 
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a.  Sketch the graph of C by hand by plotting several points and joining them with a smooth curve.  Indicate the orientation
b.  Find the slopes of the tangent line and normal line to C at any point P(x,y).

c.  Obtain an equation for the curve in the form 
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for some function f.

d.  Use a graphing utility to plot a graph of C.  Set the viewing window so that it contains the entire graph.

e.  Find the length of C .

f.  Find 
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and discuss its implications.
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Example 2:  A point moves in a plane such that its position P(x,y) at time t is given by 
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, where a is a constant greater than 0.  
a.  Describe the motion of the point.

b.  Find 
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for varying values of t.

c.  Find the length of C from 
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Example 3:  Sketch the graph of the curve C that has the parametrization: 
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Example 4:  Let C be the curve with parametrization 
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a.  Find 
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and the equation of the tangent line to C at the point when 
[image: image44.wmf])

2

ln(

=

t

.

b.  
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 and discuss the concavity of the curve C.

c.  Use a calculator to find the length of C from 
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Example 5:  Suppose the curve C defined as 
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 is rotated about the x-axis.  Without a calculator, find the area of the resulting figure and describe the shape. 

Q402: Lesson 1 Homework

I.  Textbook:  Chapter 10.1: #9, 11, 16, 17, 26, 27, 30, 43

II.  Supplemental

A.  Find an equation in x and y whose graph contains the points on the curve C.  Sketch the graph of C and indicate the orientation.

1.  
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2.  
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3.  
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4.  
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B.  Find the slopes of the tangent line and the normal line at the point on the curve that corresponds to
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5.  
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6.  
[image: image67.wmf]t

e

x

=



[image: image68.wmf]t

e

y

2

-

=



[image: image69.wmf]Â

Î

t


C.  Let C be the curve with the given parametrization, for t in 
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 .  Find the points on C at which the slope of the tangent line is m.

7.  
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D.  (1) Find the points on the curve C at which the tangent line is either horizontal or vertical.  (2) Find 
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8.  
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E.  Find the length of the curve.

9.  
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10.  
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F.  Find the area of the surface generated by revolving the curve about the x-axis.

11.  
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G.  Find the area of the surface generated by revolving the curve about the y-axis.

(Review Integration by Parts)
12.  
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BC:  Q403 CHAPTER 10 – LESSON 2 (10.2)

Consider a curve C in 
[image: image90.wmf]2
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Parametric Equation for C:

Vector Equation for C:

Position Function:

Velocity Function:

Acceleration Function:

Speed:

Differential Equations Method of finding a position function: 

Solve for the constant of integration

FTC2 Method of finding a position function:

EXAMPLE 1: (No Calculator)

A particle moves in the xy-plane so that any time t its coordinates are 
[image: image91.wmf]2

t

x

=

and 
[image: image92.wmf]3

4

t

y

-

=

.  

A.  Find the speed of the particle at 
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B.  Find the acceleration vector at 
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EXAMPLE 2: (No Calculator)

A particle moves in the xy-plane so that its velocity vector at time t is 
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and the particle’s position vector at time t = 0 is 
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A.  Find the speed of the particle at time 
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B.  Find the position vector of the particle when 
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EXAMPLE 3: (Calculator Required)

A particle moves in the xy-plane so that it velocity at time t is 
[image: image99.wmf])

1

sin(

,

)

(

+

-

=

t

t

e

t

v

t

 and the particle’s position vector at time t = 1 is 
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A.  Find the position vector of the particle when 
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B.  Find the distance traveled by the particle on 
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EXAMPLE 4:  (Calculator Required)
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A graphing calculator is required for some problems or parts of proble

. An object moving along a curve in the xy-plane has position (x(7), y(f)) at time ¢ with

% = cos(t3) and % =3 sin(rz)

for 0 <t < 3. Attime ¢ = 2. the object is at position (4. 5).
(a) Write an equation for the line tangent to the curve at (4, 5).

(b) Find the speed of the object at time # = 2.
(c) Find the total distance traveled by the object over the time interval 0 < ¢ < L.

(d) Find the position of the object at time f = 3.
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EXAMPLE 5:  (No Calculator)
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. A moving particle has position (x(#), y(1)) at time 7. The position of the particle at time # = 1 is (2.6), and the

velocity vector at any time ¢ > 0 is given by (l - iz 2+
1 t

(a) Find the acceleration vector at time =

(b) Find the position of the particle at time t =

(c) For what time ¢ > 0 does the line tangent to the path of the particle at (x(t), y(t)) have a slope of 8 ?

(d) The particle approaches a line as  — eo. Find the slope of this line. Show the work that leads to your
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CH10 LESSON 2 HOMEWORK

1 (No Calculator).  The position of a moving particle in the xy-plane is given by parametric equations 
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A.  Find the speed of the particle at 
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B.  Find  the acceleration vector at 
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2 (No Calculator).  A particle moves in the xy-plane so that any time t, t > 0, its coordinates are 
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3 (No Calculator).  The velocity vector of a particle moving in the xy-plane is given by 
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.  At t = 0, the particle is at the point (1, 1).  What is the position vector at t = 2?

4 (Calculator Required).  The velocity vector of a particle moving in the xy-plane is given by 
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.  At t = 0, the particle is at the point (-3, 1).  What is the position vector at t = 2?

HW #5  (Calculator Required)
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2
x(r) = ’7 —In(1+ ¢)and y(r) = 3sin 7.

L]

5 (a) Sketch the path of the particle in the xy-plane below. Indicate the direction of motion along the path.

v y B
1
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(b) At what time 7, 0 < 7 < 7. does x(7) attain its minimum value? What is the position (x(f). ¥(r)) of the
particle at this time?

(c) Atwhattime 7, 0 < t < 7. is the particle on the y-axis? Find the speed and the acceleration vector of the
particle at this time. 2

850x11.00in ¢





HW #6  (No Calculator)
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6. A particle moves along the curve defined by the equation y = 2* — 3z. The z—coordinate of the
particle, z(t), satisfies the equation % - & for t > 0 with initial condition z(0) = —4.
(a) Find z(t) in terms of ¢.
(b) Find dd—zz in terms of .
(c) Find the location and speed of the particle at time ¢ = 4.
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HW #7  (Calculator Required)
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During the time period from 7=0 to 7=6 seconds, a particle moves along the path
given by x(7) =3 cos(nr) and y(¢) =5 sin(nr).

(a) Find the position of the particle when #=2.5.

(b) On the axes provided below, sketch the graph of the path of the particle from
t=0 to r=6. Indicate the direction of the particle along its path.
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(c) How many times does the particle pass through the point found in part (a)?
(d) Find the velocity vector for the particle at any time 7 .
(e) Write and evaluate an integral expression, in terms of sine and cosine, that gives the
distance the particle travels from 7=1.25 to 1=1.75.
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BC:  Q403 CHAPTER 10 – LESSON 3 (10.3)

Notes Outline for Polar Calculus

Polar Function:  
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r at point P is the distance from the origin to the point P.
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 at point P is the counterclockwise angle between the x-axis and the line segment connecting the origin and a point

1.  Graph the following given in polar form:  (
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2.  Covert each polar point to a Cartesian point: 
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Notes:  
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3.  Convert each polar equation to a Cartesian equation:  

Notes:  
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10.5 #19

b. 
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10.5 #21
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10.5 #23

d. 
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10.5 #25

e. 
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10.5 #27

f. 
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g. 
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10.5 #28
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(a) Sketch 
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Derive formula for 
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(b) Find 
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Derive formula for area enclosed:  
(c) Find the area enclosed by 
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(d) Find the area inside 
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(e) Find the area outside 
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(f) Find the area inside both 
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*Derive formula for polar length:
(g) *Find the length of 
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5.  Convert from Cartesian to Polar

(-1 , 1); (
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BC:  Q403 CHAPTER 10 – LESSON 4 (REVIEW)
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1.  The diagram above shows the graphs of 
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r

.  Set up, but do not evaluate, an expression involving one or more integrals, used to find the area of the light shaded region.

2.  Revisit HW #47  Find the area within one loop of 
[image: image168.wmf])
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3.  Text Problem #48.  Find the area inside the curve 
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.

4.  Consider 
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.  Set up, but do not evaluate, an expression involving one or more integrals used to find the area inside the large loop but outside the small loop.
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1(NC).  A curve is parametrized by 
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A.  Find 
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  B.  Find 
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2(NC).  Find the length of the curve parametrized by 
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3(Calc).  A curve is generated by 
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. Find the area of the surface generated by revolving the curve about the y-axis.

7.  The position vector of a particle in the plane is given by 
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A(Calc).  Draw the graph of the particle.

B(NC).  Find the velocity and acceleration vectors.

8(NC).  Solve the initial value problem for r as a vector function of t.  
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9(Calc).  At time t = 1, a particle starts has the position (1,2) and continues to moves along a curve C.  The velocity of a particle moving along the curve C is given by: 
[image: image185.wmf])

cos(

,

ln

)

(

t

e

t

t

v

-

=

r

.  Find the position of the particle at time t = 3.1.

12(Calc).  Graph the polar curve given by 
[image: image186.wmf])
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13(NC).  Suppose a polar graph is symmetric about the x-axis and contains the point 
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.  Which of the following identifies another point that must be on the graph?

I.  
[image: image188.wmf]÷

ø

ö

ç

è

æ

-

6

,

4

p

  II. 
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[image: image190.wmf]÷

ø

ö

ç

è

æ

-

6

5

,

4

p

 

 (A)I only      (B)II only      (C)III only     (D) I and II       (E) I and III

14(NC).  Replace the polar equation 
[image: image191.wmf])
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by an equivalent Cartesian equation.

15(NC).  Find the slope of the polar curve 
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16(Calc).  Find the area of the region enclosed by the oval limacon 
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17(NC … check with Calc).  Find the length of the polar curve given by 
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� EMBED Equation.3  ���





What is the domain of f(� EMBED Equation.3  ���) to complete exactly one revolution of the curve?  Is it � EMBED Equation.3  ��� or is it � EMBED Equation.3  ���?  Each curve is different.  Use polar MODE to graph.  Use WINDOW to check from � EMBED Equation.3  ��� to � EMBED Equation.3  ��� or � EMBED Equation.3  ���.


See page 557: 11-20





HOMEWORK in TEXTBOOK


Section 10.3: 41, 46, 47, 53, 56, 57, 58, 59


Section 10.3: 1 – 9 odd; 21 -29 odd, 16, 17
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