BC: Q402.CH9B – Power Series: Writing Power Series (LESSON 1)

Power Series:

An expression of the form $\sum_{n=0}^{\infty} c_n x^n = c_0 + c_1 x + c_2 x^2 + \dots + c_n x^n + \dots \text{ is a power series centered at } x = 0.$

An expression of the form

 $\sum_{n=0}^{\infty} c_n (x-a)^n = c_0 + c_1 (x-a) + c_2 (x-a)^2 + \dots + c_n (x-a)^n + \dots \text{ is a power series centered at } x = a.$

I. Write a Power Series:

- A. GEOMETRIC SUM: Using properties of a Geometric Series Sum
- B. **RAW CONSTRUCTION**: Using Raw (*Maclaurin*) Construction *compile a set of memorized Maclaurin Series*
- C. MANIPULATE KNOWN: Using Manipulation (integral or derivative) of a known power series
- D. SUBSTITUTE KNOWN: Using Substitution into a known power series.

II. Write an nth order polynomial:

- A. GEOMETRIC SUM: Using properties of a Geometric Series Sum
- B. RAW CONSTRUCTION: Using Raw (Maclaurin) Construction compile a set of memorized Maclaurin Series
- C. MANIPULATE KNOWN: Using Manipulation (integral or derivative) of a known power series
- D. SUBSTITUTE KNOWN: Using Substitution into a known power series.

Power Series:

An expression of the form

$$\sum_{n=0}^{\infty} c_n x^n = c_0 + c_1 x + c_2 x^2 + \dots + c_n x^n + \dots \text{ is a power series centered at } x = 0.$$

An expression of the form

$$\sum_{n=0}^{\infty} c_n (x-a)^n = c_0 + c_1 (x-a) + c_2 (x-a)^2 + \dots + c_n (x-a)^n + \dots \text{ is a power series centered at } x = a.$$

Definition: Taylor Series Generated by f at x = a

Let *f* be a function with derivatives of all orders throughout some open interval containing *a*. Then the Taylor series generated by *f* at x = a is

$$f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n + \dots = \sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!}(x-a)^k.$$

The partial sum $P_n(x) = \sum_{k=0}^n \frac{f^{(k)}(a)}{k!} (x-a)^k$ is the Taylor polynomial of order *n* for *f* at x = a.

Definition: Taylor Series Generated by f at x = 0 (Maclaurin Series)

Let *f* be a function with derivatives of all orders throughout some open interval containing 0. Then the Taylor series generated by f at x = 0 is

$$f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \dots + \frac{f^{(n)}(0)}{n!}x^n + \dots = \sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!}x^k.$$

This series is also called the Maclaurin Series generated by f at x = 0.

The partial sum $P_n(x) = \sum_{k=0}^n \frac{f^{(k)}(0)}{k!} x^k$ is the Taylor polynomial of order *n* for *f* at x = 0.

I. Write a Power Series: A.GEOMETRIC SUM: Using properties of a Geometric Series Sum Give a power series representation of ...

I. Write a Power Series:

B. RAW CONSTRUCTION: Using Raw (*Maclaurin*) Construction $f(x) = f(0) + f'(0)x + \frac{f''(0)x^2}{2!} + \frac{f'''(0)x^3}{3!} + \dots + \frac{f^n(0)x^n}{n!} + \dots$

Give a power series representation of ...

I. Write a Power Series: C. MANIPULATE KNOWN: Using Manipulation (integral or derivative) of a known Give a power series representation of ...

I. Write a Power Series:

D. SUBSTITUTE KNOWN: Using Substitution into a known power series. Give a power series representation of ...

II. Write an nth order polynomial: Give a 7^{th} order Taylor Polynomial for $\sin x$

Give a 6^{th} order Taylor Polynomial for $\cos x$

HW: PG. 483: #55, 57, 59, 72, 63, 64 PG. 492: #3, 5, 7, 10, 12, 22, 24, 27 **BC:** Q402 – CH9B: Lesson 1 continued - A Closer Look 1. Find a power series for $f(x) = \ln(1+x)$ centered at x = 0.

2. Suppose $g'(x) = \frac{1}{1+x}$ with g(0) = 5 and domain -1 < x < 1. Find a power series for the function g(x) centered at x = 0.

Connection: In #1 the particular function was given already: $f(x) = \ln(1+x)$ with f(0) = 0. In #2 the particular function was not given, so we needed a condition to find it.

BC: Q402 – CH9B LESSON2

Memorize | Substitute into Memorized Maclaurin | Raw Construction

Taylor Series:

- 1. $f(x) = \cos(x)$ Natural Center:
- A. Write a fourth order Taylor polynomial for f(x) = cos(x) centered at x = 0

B. Write a third order Taylor polynomial for $f(x) = \cos(x)$ centered at $x = \frac{\pi}{4}$

2.
$$f(x) = \cos\left(x - \frac{\pi}{4}\right)$$
 Natural Center:

A. Write a second order Taylor polynomial for $f(x) = \cos\left(x - \frac{\pi}{4}\right)$ centered at x = 0

B. Write a fourth order Taylor polynomial for $f(x) = \cos\left(x - \frac{\pi}{4}\right)$ centered at $x = \frac{\pi}{4}$

- 3. $f(x) = e^{5x}$ Natural Center:
- A. Write a third order Taylor polynomial for $f(x) = e^{5x}$ centered at x = 0

B. Write a third order Taylor polynomial for $f(x) = e^{5x}$ centered at x = 1

- 4. $f(x) = e^{(x-2)}$ Natural Center:
- A. Write a third order Taylor polynomial for $f(x) = e^{(x-2)}$ centered at x = 0

B. Write a third order Taylor polynomial for $f(x) = e^{(x-2)}$ centered at x = 2

HW

1. Let $P(x) = 7 - 3(x - 4) + 5(x - 4)^2 - 2(x - 4)^3 + 6(x - 4)^4$ be the fourth-degree Taylor polynomial for the function *f* about 4. Assume *f* has derivatives of all orders for all real numbers.

- (a) Find f(4) and f'''(4).
- (b) Write the second-degree Taylor polynomial for f' about 4 and use it to approximate f'(4.3)
- (c) Write the fourth-degree Taylor polynomial for $g(x) = \int_{4}^{3} f(t)dt$ about 4.

2. Let *f* be a function that has derivatives of all orders for all real numbers. Assume f(0) = 5, f'(0) = -3, f''(0) = 1, f'''(0) = 4.

- (a) Write the third-degree Taylor polynomial for f about x = 0 and use it to approximate f(0.2).
- (b) Write the fourth-degree Taylor polynomial for g, where $g(x) = f(x^2)$, about x = 0.
- (c) Write the third-degree polynomial for h, where $h(x) = \int_{0}^{x} f(t)dt$, about x = 0.
- (d) Suppose r'(x) = f(x) with r(0) = 10. Write a third-degree polynomial for *r* about x = 0.
- 3. The Maclaurin series f(x) is given by $1 + \frac{x}{2!} + \frac{x^2}{3!} + \frac{x^3}{4!} + \dots + \frac{x^n}{(n+1)!} + \dots$
 - (a) Find f'(0) and $f^{(17)}(0)$.
 - (b) Let g(x) = xf(x). Write the Maclaurin series for g(x), showing the first three nonzero terms and the general term.
 - (c) Write g(x) in terms of a familiar function without using series. Then, write f(x) in terms of the same familiar function.
 - (d) For what values of x does the given series for f(x) converge? Show your reasoning.

Textbook: Pg. 492 # 4, 14, 19, 21, 23, 33, and 34

BC: Q402.CH9B – Taylor Series: Error Analysis (LESSON 3)

THM E1: Alternating Series Bound

If a series for $f(x_0)$ is strictly alternating and decreasing in absolute value to zero, the error in using $P_n(x_0)$ to approximate $f(x_0)$ is less than or equal to the first omitted non-zero term:

$$P_n(x_0) \approx f(x_0) = a_0 - a_1 + a_2 - a_3 + \dots + (-1)^n a_n + \dots \text{ with } |error| = |R_n(x_0)| \le |a_{n+1}|$$

THM E2: Taylor's Formula with Remainder

The error in using $P_n(x_0)$ to approximate $f(x_0)$ is equal to $R_n(x_0) = \frac{f^{(n+1)}(c)(x_0-a)^{n+1}}{(n+1)!}$ for some value *c* where *c* is between the center *a* and the value of x_0 (inclusive).

$$P_n(x_0) \approx f(x_0) \text{ with } |error| = |R_n(x_0)| = \left| \frac{f^{(n+1)}(c)(x_0 - a)^{n+1}}{(n+1)!} \right| \text{ for } \begin{cases} a \le c \le x_0 & \text{if } a < x_0 \\ x_0 \le c \le a & \text{if } x_0 < a \end{cases}$$

Consequently:
$$|error| = |R_n(x_0)| \le \frac{\left[\frac{f^{(n+1)}(c)}{MAX} \right] (x_0 - a)^{n+1}}{(n+1)!} \text{ for } \begin{cases} a \le c \le x_0 & \text{if } a < x_0 \\ x_0 \le c \le a & \text{if } x_0 < a \end{cases}$$

ERROR ANALYSIS (E1: Alternating Series Bound)

- 1. $f(x) = \cos x$
- A. Use a 5th order Taylor polynomial centered at x = 0 to estimate f(0.5).

B. Show that the estimate in part A differs from f(0.5) by no more than $\frac{1}{2^{6}6!}$.

2. Approximate $\int_{0}^{1} \sin(x^2) dx$ to four decimal places. Estimate the error.

- 3. Let *f* be the function defined by $f(x) = \frac{1}{x-1}$.
 - (a) Write the first four terms and the general term of the Taylor series expansion of f(x) about x = 2.
 - (b) Use the result from part (a) to find the first four terms and the general term of the series expansion about x = 2 for $\ln |x-1|$.
 - (c) Use the series in part (b) to compute a number that differs from $\ln \frac{3}{2}$ by less than

0.05. Justify your answer.

4. The Taylor series about x = 5 for a certain function f converges to f(x) for all x in the interval of convergence. The *n*th derivative of f at x = 5 is given by $f^{(n)}(5) = \frac{(-1)^n n!}{2^n (n+2)}$, and $f(5) = \frac{1}{2}$.

- (a) Write the third-degree Taylor polynomial for f about x = 5.
- (b) Find the radius of convergence of the Taylor series for f about x = 5.
- (c) Show that the sixth-degree Taylor polynomial for f about x = 5 approximates f(6) with error less than $\frac{1}{1000}$.

5. The function f is defined by the power series $f(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n+1)!}$ for all real numbers.

(a). Find f'(0) and f''(0). Determine whether f has a local maximum, a local minimum, or neither at x = 0. Give a reason for your answer.

(b). Show that $1 - \frac{1}{3!}$ approximates f(1) with error less than $\frac{1}{100}$.

(c) Show that y = f(x) is a solution to the differential equation $xy' + y = \cos x$.

ERROR ANALYSIS (E2: Lagrange Error Bound)

- 6. $f(x) = \cos x$
- A. Use a 5th order Taylor polynomial centered at x = 0 to estimate f(0.5).

B. Show that the estimate in part A differs from f(0.5) by no more than $\frac{1}{2^{6}6!}$.

- 7. $f(x) = \cos(2x)$
- A. Use a 2nd order Taylor polynomial centered at $x = \frac{\pi}{3}$ to estimate $f\left(\frac{5\pi}{24}\right)$.
- B. Show that $\left| f\left(\frac{5\pi}{24}\right) P_2\left(\frac{5\pi}{24}\right) \right| < \frac{\pi^3}{380}$.

- 8. $f(x) = \sqrt{1+x}$
- A. Use a 1st order Taylor polynomial centered at x = 0 to estimate f(0.2).
- B. Show that $|R_1(0.2)| \le .005$

- 9. $f(x) = e^x$
- A. Use a 3rd order Taylor polynomial centered at x = 0 to estimate f(1).
- B. Show that $|f(1) P_3(1)| < \frac{1}{8}$.

x	h(x)	h'(x)	h''(x)	h'''(x)	$h^{(4)}(x)$
1	11	30	42	99	18
2	80	128	$\frac{488}{3}$	$\frac{448}{3}$	<u>584</u> 9
3	317	$\frac{753}{2}$	$\frac{1383}{4}$	<u>3483</u> 16	<u>1125</u> 16

CALCULATOR ACTIVE

10. Let *h* be a function having derivatives of all orders for x > 0. Select values of *h* and its first four derivatives are indicated in the table above. The function *h* and these four derivatives are increasing on the interval $1 \le x \le 3$.

A. Write the first-degree Taylor polynomial for *h* about x = 2 and use it to approximate h(1.9). Is this approximation greater than or less than h(1.9)? Explain your reasoning.

B. Write the third-degree Taylor polynomial for h about x = 2 and use it to approximate h(1.9).

C. Use the Lagrange error bound to show that the third-degree Taylor polynomial for h about

x = 2 approximates h(1.9) with error less than 3×10^{-4} .

11. Consider a function f(x) which has non-zero real derivatives of all orders. A graph of |f'''(x)| on (-2,2) is show above. Show that $|f(0.5) - P_2(0.5)| < \frac{3}{8}$ where $P_2(x)$ is a Taylor polynomial of second degree centered at zero.

12. Use the first two nonzero terms of the Maclaurin series to approximate sin(x). Estimate the maximum error if |x| < 1.