BC: Q402.CH9B – Power Series: Writing Power Series (LESSON 1)
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Power Series:

An expression of the form
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is a power series centered at 
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I.  Write a Power Series:

A. GEOMETRIC SUM:  Using properties of a Geometric Series Sum
B. RAW CONSTRUCTION:  Using Raw (Maclaurin) Construction – compile a set of memorized Maclaurin Series
C. MANIPULATE KNOWN: Using Manipulation (integral or derivative) of a known power series
D. SUBSTITUTE KNOWN: Using Substitution into a known power series.

II.  Write an nth order polynomial:
A. GEOMETRIC SUM:  Using properties of a Geometric Series Sum
B. RAW CONSTRUCTION:  Using Raw (Maclaurin) Construction – compile a set of memorized Maclaurin Series
C. MANIPULATE KNOWN: Using Manipulation (integral or derivative) of a known power series

D. SUBSTITUTE KNOWN: Using Substitution into a known power series.

Power Series:

An expression of the form
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Definition:  Taylor Series Generated by f at 
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Let f be a function with derivatives of all orders throughout some open interval containing a.  Then the Taylor series generated by f at 
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The partial sum 
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Definition:  Taylor Series Generated by f at 
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 (Maclaurin Series)

Let f be a function with derivatives of all orders throughout some open interval containing 0.  Then the Taylor series generated by f at 
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This series is also called the Maclaurin Series generated by f at 
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The partial sum 
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I.  Write a Power Series:
A.GEOMETRIC SUM:  Using properties of a Geometric Series Sum
Give a power series representation of …

I.  Write a Power Series:

B. RAW CONSTRUCTION:  Using Raw (Maclaurin) Construction 
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Give a power series representation of …

I.  Write a Power Series:

C. MANIPULATE KNOWN: Using Manipulation (integral or derivative) of a known 

Give a power series representation of …

I.  Write a Power Series:

D. SUBSTITUTE KNOWN: Using Substitution into a known power series.

Give a power series representation of …

II.  Write an nth order polynomial:
Give a 7th order Taylor Polynomial for 
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Give a 6th order Taylor Polynomial for 
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PG. 483: #55, 57, 59, 72, 63, 64

PG. 492: #3, 5, 7, 10, 12, 22, 24, 27
BC: Q402 – CH9B: Lesson 1 continued - A Closer Look

1.  Find a power series for 
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Connection:  
In #1 the particular function was given already:  
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In #2 the particular function was not given, so we needed a condition to find it.
BC: Q402 – CH9B LESSON2

Memorize  |  Substitute into Memorized Maclaurin  |  Raw Construction 

Taylor Series:

1.  
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Natural Center:

A.  Write a fourth order Taylor polynomial for 
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B.  Write a third order Taylor polynomial for 
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Natural Center:

A.  Write a second order Taylor polynomial for 
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B.  Write a fourth order Taylor polynomial for 
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Natural Center:

A.  Write a third order Taylor polynomial for 
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B.  Write a third order Taylor polynomial for 
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Natural Center:

A.  Write a third order Taylor polynomial for 
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B.  Write a third order Taylor polynomial for 
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1.  Let 
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be the fourth-degree Taylor polynomial for the function f about 4.  Assume f has derivatives of all orders for all real numbers.

(a) Find 
[image: image53.wmf])

4

(

f

and 
[image: image54.wmf])

4

(

///

f

.

(b) Write the second-degree Taylor polynomial for 
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(c) Write the fourth-degree Taylor polynomial for 
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2.  Let f be a function that has derivatives of all orders for all real numbers.  Assume 
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(a) Write the third-degree Taylor polynomial for f about 
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 and use it to approximate f(0.2).

(b) Write the fourth-degree Taylor polynomial for g, where 
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(c) Write the third-degree polynomial for h, where 
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(d) Suppose 
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3.  The Maclaurin series 
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(a) Find 
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(b) Let 
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  Write the Maclaurin series for g(x) , showing the first three nonzero terms and the general term.

(c) Write g(x) in terms of a familiar function without using series.  Then, write f(x) in terms of the same familiar function.

(d) For what values of x does the given series for f(x) converge?  Show your reasoning.

Textbook: Pg. 492 # 4, 14, 19, 21, 23, 33, and 34

BC: Q402.CH9B – Taylor Series: Error Analysis (LESSON 3)
THM E1:  Alternating Series Bound

If a series for 
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THM E2: Taylor’s Formula with Remainder

The error in using 
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ERROR ANALYSIS (E1: Alternating Series Bound)

1.  
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A.  Use a 5th order Taylor polynomial centered at 
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3.  Let f be the function defined by 
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(a) Write the first four terms and the general term of the Taylor series expansion of f(x) about 
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(a) Write the third-degree Taylor polynomial for f about x = 5.

(b) Find the radius of convergence of the Taylor series for f about x = 5.

(c) Show that the sixth-degree Taylor polynomial for f about x = 5 approximates f(6) with error less than 
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5.  The function f is defined by the power series 
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ERROR ANALYSIS (E2: Lagrange Error Bound)
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11.  Consider a function 
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 which has non-zero real derivatives of all orders.  A graph of 
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 where P2(x) is a Taylor polynomial of second degree centered at zero.

12.  
Use the first two nonzero terms of the Maclaurin series to approximate sin(x).  

Estimate the maximum error if |x|<1.
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