BC.Q402.Lesson4.Practice Exam

X. [15] The function f has derivatives of all orders for all real numbers x. The third-degree Taylor polynomial for f about x = 2 is $P_3(x) = -3 + 5(x - 2) + \frac{3}{2}(x - 2)^2 - \frac{4}{3}(x - 2)^3$.

- (a) Find f'''(2).
- (b) Approximate f(1.5) using the third-degree polynomial.
- (c) The fourth derivative of f satisfies the inequality $|f^4(x)| \le 3$ for all x in the closed interval [1.5, 2]. Use the Lagrange error bound (Remainder Estimation Theorem) on the approximation to f(1.5) found in part (a) to explain why $f(1.5) \ne -5$.

Y. [24] A function f is defined by $f(x) = \frac{1}{3} + \frac{2}{3^2}x + \frac{3}{3^3}x^2 + \dots + \frac{n+1}{3^{n+1}}x^n + \dots$ for all x in the interval of convergence of the given series.

- (a) Find $\lim_{x\to 0} \frac{f(x) \frac{1}{3}}{x}$
- (b) Write the first three nonzero terms and the general term for an infinite series that represents $\int_{0}^{1} f(x)dx$.
- (c) Find the sum of the series determined in part (b).

Z [28] Let f be a function given by $f(x) = e^{-2x^2}$

- (a) find the first four nonzero terms and the general term of the power series for f(x) about x = 0
- (b) Find the interval of convergence of the power series for f(x) about x = 0. Show the analysis that leads to your conclusion.
- (c) Let g be a function given by the first four nonzero terms of the power series for f(x) about x = 0. Show that |f(x) g(x)| < 0.02 for $-0.6 \le x \le 0.6$

W. Let f be the function defined by $f(x) = \frac{1}{\sqrt{9+x}}$.

- (a) Construct a second-order Taylor Polynomial for f(x) about x = 0.
- (b) Show that if the polynomial in part (a) were used to approximate $1/\sqrt{10}$, then the |error| in approximation is less than $\frac{15}{100001}$.
- (c) Suppose w'(x) = f(x) where $w(0) = -\frac{4}{9}$. Write a second degree Taylor Polynomial centered about x = 0 for w(x).