BC: Q401.CH9A – Convergent and Divergent Series (LESSON 4)

****GRAND FINALE REVIEW****

Find the interval of convergence of the power series.

1.
$$\sum_{n=0}^{\infty} (-1)^n (4x+1)^n$$
: Pg. 523 #37

Find the interval of convergence of the power series. Also state the center and radius of convergence.

2.
$$\sum_{n=0}^{\infty} \frac{n(x+3)^n}{5^n}$$
: Pg. 523 #43
3.
$$\sum_{n=0}^{\infty} (-2)^n (n+1)(x-1)^n$$
: Pg. 523 #47
4.
$$\sum_{n=1}^{\infty} \frac{(4x-5)^{2n+1}}{n^{\frac{3}{2}}}$$
: Pg. 523 #48

Find the interval of convergence of the series and, within this interval, the sum of the series as a function of x.

5.
$$\sum_{n=0}^{\infty} \frac{(x-2)^n}{10^n}$$
: Pg. 523 #39
6. $\sum_{n=0}^{\infty} (\ln x)^n$: Pg. 523 #50

Given the power series ...

- A. Determine the values of x for which the power series converges absolutely.
- B. Determine the values of x for which the power series converges conditionally.
- C. Determine the values of x for which the power series diverges.

7.
$$\sum_{n=1}^{\infty} \frac{(-1)^n (x-1)^n}{2n+3}$$

****** Positive Term Series Review ******

Determine whether each <u>positive-term-series</u> converges or diverges. *There may be more than one test that yields conclusive results.*

1.
$$\sum_{n=1}^{\infty} \frac{1}{n^4 + n^2 + 1}$$

$$2. \quad \sum_{n=1}^{\infty} \frac{\sqrt{n}}{n+4}$$

3.
$$\sum_{n=1}^{\infty} \frac{1+2^n}{1+3^n}$$

4.
$$\sum_{n=1}^{\infty} n e^{-n}$$

$$5. \quad \sum_{n=1}^{\infty} \frac{3n+1}{2^n}$$

$$6. \quad \sum_{n=1}^{\infty} \frac{\sqrt{n}}{n^2 + 1}$$

7.
$$\sum_{n=1}^{\infty} \frac{100^n}{n!}$$

8.
$$\sum_{n=1}^{\infty} \frac{1}{n^n}$$

18. Which of the following series converge?

I.
$$\sum_{n=1}^{\infty} \frac{n}{n+2}$$
 II. $\sum_{n=1}^{\infty} \frac{\cos(n\pi)}{n}$ III. $\sum_{n=1}^{\infty} \frac{1}{n}$

- (A) None
- (B) II only
- (C) III only
- (D) I and II only
- (E) I and III only

22. If $\lim_{b\to\infty} \int_1^b \frac{dx}{x^p}$ is finite, then which of the following must be true?

(A)
$$\sum_{n=1}^{\infty} \frac{1}{n^p}$$
 converges
(B) $\sum_{n=1}^{\infty} \frac{1}{n^p}$ diverges
(C) $\sum_{n=1}^{\infty} \frac{1}{n^{p-2}}$ converges

(D)
$$\sum_{n=1}^{\infty} \frac{1}{n^{p-1}}$$
 converges

(E)
$$\sum_{n=1}^{\infty} \frac{1}{n^{p+1}}$$
 diverges

76. For what integer k, k > 1, will both $\sum_{n=1}^{\infty} \frac{(-1)^{kn}}{n}$ and $\sum_{n=1}^{\infty} \left(\frac{k}{4}\right)^n$ converge?

84. What are all values of x for which the series $\sum_{n=1}^{\infty} \frac{(x+2)^n}{\sqrt{n}}$ converges?

(A)
$$-3 < x < -1$$
 (B) $-3 \le x < -1$ (C) $-3 \le x \le -1$ (D) $-1 \le x < 1$ (E) $-1 \le x \le 1$

- 6) What are all values of *p* for which $\int_{1}^{\infty} \frac{1}{x^{2p}} dx$ converges?
 - (A) p < -1
 - (B) p > 0
 - (C) $p > \frac{1}{2}$
 - (D) p>1
 - (E) There are no values of p for which this integral converges.
- 10) What is the value of $\sum_{n=1}^{\infty} \frac{2^{n+1}}{3^n}$?
 - (A) 1
 - (B) 2
 - (C) 4
 - (D) 6
 - (E) The series diverges.

22) What are all values of *p* for which the infinite series $\sum_{n=1}^{\infty} \frac{n}{n^p + 1}$

converges?

- (A) p > 0
- (B) $p \ge 1$
- (C) p > 1
- (D) $p \ge 2$
- (E) p > 2

24) Which of the following series diverge?

$$I \cdot \sum_{n=0}^{\infty} \left(\frac{\sin 2}{\pi}\right)^n$$
$$II \cdot \sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n}}$$
$$III \cdot \sum_{n=1}^{\infty} \left(\frac{e^n}{e^n + 1}\right)$$

(A) III only(B) I and II only(C) I and III only(D) II and III only(E) I, II, and III

- 4. Consider the series $\sum_{n=1}^{\infty} \frac{e^n}{n!}$. If the ratio test is applied to the series, which of the following inequalities results, implying that the series converges?
 - (A) $\lim_{n\to\infty} \frac{e}{n!} < 1$
 - (B) $\lim_{n\to\infty} \frac{n!}{e} < 1$
 - (C) $\lim_{n\to\infty} \frac{n+1}{e} < 1$
 - (D) $\lim_{n \to \infty} \frac{e}{n+1} < 1$

(E)
$$\lim_{n \to \infty} \frac{e}{(n+1)!} < 1$$

12. Which of the following series converges for all real numbers x?

(A)
$$\sum_{n=1}^{\infty} \frac{x^n}{n}$$

(B)
$$\sum_{n=1}^{\infty} \frac{x^n}{n^2}$$

(C)
$$\sum_{n=1}^{\infty} \frac{x^n}{\sqrt{n}}$$

(D)
$$\sum_{n=1}^{\infty} \frac{e^n x^n}{n!}$$

(E)
$$\sum_{n=1}^{\infty} \frac{n! x^n}{e^n}$$

16. What are all values of x for which the series $\sum_{n=1}^{\infty} \left(\frac{2}{x^2+1}\right)^n$ converges?

- (A) -1 < x < 1
- (B) x > 1 only
- (C) $x \ge 1$ only
- (D) x < -1 and x > 1 only
- (E) $x \leq -1$ and $x \geq 1$

- 79. Let f be a positive, continuous, decreasing function such that $a_n = f(n)$. If $\sum_{n=1}^{\infty} a_n$ converges to k, which of the following must be true?
 - (A) $\lim_{n \to \infty} a_n = k$
 - (B) $\int_{1}^{n} f(x) \, dx = k$
 - (C) $\int_{1}^{\infty} f(x) dx$ diverges.
 - (D) $\int_{1}^{\infty} f(x) dx$ converges.

(E)
$$\int_{1}^{\infty} f(x) \, dx = k$$

- 82. If $\sum_{n=1}^{\infty} a_n$ diverges and $0 \le a_n \le b_n$ for all *n*, which of the following statements must be true?
 - (A) $\sum_{n=1}^{\infty} (-1)^n a_n$ converges. (B) $\sum_{n=1}^{\infty} (-1)^n b_n$ converges. (C) $\sum_{n=1}^{\infty} (-1)^n b_n$ diverges. (D) $\sum_{n=1}^{\infty} b_n$ converges. (E) $\sum_{n=1}^{\infty} b_n$ diverges.

5. The Maclaurin series for the function f is given by $f(x) = \sum_{n=0}^{\infty} \left(-\frac{x}{4}\right)^n$. What is the value of f(3)?

- (A) -3 (B) $-\frac{3}{7}$ (C) $\frac{4}{7}$ (D) $\frac{13}{16}$ (E) 4
- 9. Which of the following series converge?

I.
$$\sum_{n=1}^{\infty} \frac{8^n}{n!}$$
 II. $\sum_{n=1}^{\infty} \frac{n!}{n^{100}}$ III. $\sum_{n=1}^{\infty} \frac{n+1}{(n)(n+2)(n+3)}$

(A) I only (B) II only (C) III only (D) I and III only

(E) I, II, and III

13. What is the radius of convergence of the series
$$\sum_{n=0}^{\infty} \frac{(x-4)^{2n}}{3^n}$$
?
(A) $2\sqrt{3}$ (B) 3 (C) $\sqrt{3}$ (D) $\frac{\sqrt{3}}{2}$ (E) 0

- 22. The power series $\sum_{n=0}^{\infty} a_n (x-3)^n$ converges at x = 5. Which of the following must be true?
 - (A) The series diverges at x = 0.
 - (B) The series diverges at x = 1.
 - (C) The series converges at x = 1.
 - (D) The series converges at x = 2.
 - (E) The series converges at x = 6.

27. For what values of p will both series $\sum_{n=1}^{\infty} \frac{1}{n^{2p}}$ and $\sum_{n=1}^{\infty} \left(\frac{p}{2}\right)^n$ converge?

(A) -2 only

(B)
$$-\frac{1}{2} only$$

(C)
$$\frac{1}{2} only$$

(D)
$$p < \frac{1}{2}$$
 and $p > 2$

(E) There are no such values of p.

90. If the series ∑_{n=1}[∞] a_n converges and a_n > 0 for all n, which of the following must be true?
(A) lim_{n→∞} | a_{n+1}/a_n | = 0
(B) |a_n| < 1 for all n
(C) ∑_{n=1}[∞] a_n = 0
(D) ∑_{n=1}[∞] na_n diverges.
(E) ∑_{n=1}[∞] a_n/n converges.