PRACTICE EXAM

BC.Q101.EXAMINATION – FORM A

Ch 2.4, 3.1, 3.2: Derivative Foundation

NO CALCULATORS [60 minutes]

NAME:

DATE:

BLOCK:

1[10]. Consider the function $k(x) = \begin{cases} 2x+4; x \le 1\\ x^2 - 4x + 9; x > 1 \end{cases}$. Formally prove that *k* is or is not **continuous at** x = 1.

2[15]. Suppose
$$f(x) = \begin{cases} 2x-3; x \ge 1\\ x^2-2; x < 1 \end{cases}$$

Formally prove that $f(x)$ is or is not **differentiable at** $x = 1$.

3[5]. Consider the <u>continuous and differentiable</u> function $f(x) = \begin{cases} 2x + 4; x \ge 1 \\ x^2 + 5; x < 1 \end{cases}$. Find the **average rate of change** of *f* on [-2,3]. Show work.

4[20]. Let g(x) be a smooth and continuous function that is not explicitly defined, but whose select values are shown in the table below. The domain for g(x) is [-4,6].

x	-4	-3	-2	0	3	4	5	6
g(x)	2	5	0	-2	4	6	-12	-15
g'(x)	?	?	?	?	1.8	?	?	?

A. Estimate g'(-3), g'(4.5). Show work.

B. Write an equation of the line tangent to g(x) at x = 3.

C. Find the average rate of change in g on [-4,6]. Show work.

5[10]. The graph of f(x) is given below on the left. **Draw** the function f'(x).

6[10]. **Draw** the function g(x) which is continuous for all points on its domain. The domain of g(x) is [-4, 3], g(2) = 0 and $g'(x) = \begin{cases} 1; x < -1 \\ 2; -1 < x < 1. \\ -3; x > 1 \end{cases}$

																►y										:	:				
																- ···															
		i	i				i						i		4				i									i			
		į	į	i			ļ					į	į						ļ				į				į	į			
		÷	· · · · ·																¦												
		÷	÷	·			<u> </u>					·		÷													÷		÷		
		÷	· · · · ·												2-											}					
																										1	1				
							L																			L	l				
																										1	1				
			i	i																											
																										1					x
_	_	÷	-	÷	-	_	-		-	_	-	<u> </u>	-	<u>. </u>	_		-		-		_		-		_		-		-		
	-	-7	: -	6	-	5		4	-	3	-	2		1		0		1		2		3		4 ;		;5	:	6		9	:
		÷	÷																												
			·																												
															2																
															2																
															2																
															-=2																
															2																
															2																
															2																
															-=2																
															-=2																
															-=2																
															2																
															2																

A. If f(2) = 3, write an equation of the tangent to the f at x = 2

- B. For what value(s) of *x* will *f* have a horizontal tangent?
- C. For what value(s) of x will f have a tangent line parallel to y = -6x 15

8[15]. Let $f(x) = \frac{1}{x+1}$.

A. Use the **definition for the derivative at** x = a to find f'(2).

B. Write an **equation** for the line **tangent** to f(x) at x = 2.

9[5]. Suppose that f has the property f(x+y) = f(x)f(y) for all values of x and y and that f(0) = f'(0) = 1. Show that f is differentiable and f'(x) = f(x).