

Practice

Arithmetic Sequences

Find the nth term of each arithmetic sequence.

1.
$$a_1 = -5, d = 4, n = 9$$

2.
$$a_1 = 13, d = -\frac{5}{2}, n = 29$$

3.
$$a_1 = 3$$
, $d = -4$, $n = 6$

4.
$$a_1 = -5, d = \frac{1}{2}, n = 10$$

Complete each statement.

5. 97 is the
$$\frac{?}{}$$
 th term of -3 , 1, 5, 9, ...

Find the indicated term in each arithmetic sequence.

7.
$$a_{15}$$
 for -3, 3, 9, ...

8.
$$a_{19}$$
 for 17, 12, 7, ...

9.
$$a_{26}$$
 for $1, \frac{7}{3}, \frac{11}{3}, \cdots$

10.
$$a_{35}$$
 for 17, $16\frac{2}{3}$, $16\frac{1}{3}$, ...

Find the missing terms in each arithmetic sequence.

__ DATE __

Student Edition Pages 656-661

Arithmetic Series

Find S_{a} for each arithmetic series described.

1.
$$a_1 = 16$$
, $a_n = 98$, $n = 13$

2.
$$a_1 = 13$$
, $d_2 = -6$, $n_3 = 21$

3.
$$d = -\frac{2}{3}$$
, $n = 16$, $a_n = 44$

4.
$$a_1 = -121, d = 3, a_n = 5$$

Find the sum of each arithmetic series.

5.
$$5 + 7 + 9 + \cdots + 27$$

6.
$$-4 + 1 + 6 + \cdots + 91$$

7.
$$13 + 20 + 27 + \cdots + 272$$

8.
$$89 + 86 + 83 + \cdots + 20$$

9.
$$\sum_{k=3}^{8} (5k-10)$$

10.
$$\sum_{p=4}^{10} (2p + 1)$$

11.
$$\sum_{n=1}^{6} (3n+5)$$

12.
$$\sum_{j=1}^{5} (9-4j)$$

Find the first three terms of each arithmetic series.

13.
$$a_1 = 14$$
, $a_n = -85$, $S_n = -1207$ 14. $n = 16$, $a_n = 15$, $S_n = -120$

14.
$$n = 16, a_n = 15, S_n = -120$$

Solve.

15. A display in a grocery store has 1 can on the top row, 2 cans on the 2nd row, 3 cans on the 3rd row, and so on. How many cans are needed to make 25 rows?

Student Edition Pages 662-669

Practice

Geometric Sequences

Find the first four terms of each geometric sequence.

1.
$$a_i = -6, r = -\frac{2}{3}$$

2.
$$a_1 = 2, r = \sqrt{3}$$

3.
$$a_1 = -\frac{5}{2}, r = 2$$

4.
$$a_1 = \sqrt{2}, r = \sqrt{3}$$

Find the nth term of each geometric sequence.

5.
$$a_1 = 5$$
, $n = 4$, $r = 3$

6.
$$a_{4} = 20, n = 6, r = -3$$

7.
$$a_1 = -4$$
, $n = 6$, $r = -2$

8.
$$a_6 = 8$$
, $n = 12$, $r = \frac{1}{2}$

Solve.

9. Each foot of water screens out 60% of the light above. What percent of the light remains after passing through 5 feet of water?

Find the geometric means in each sequence. Then graph each sequence, using the x-axis for the number of the term and the y-axis for the term itself.

Student Edition Pages 670–675

Practice

Geometric Series

Find the sum of each geometric series.

1.
$$160 \div 80 \div 40 \div \cdots$$
, $n = 6$

2.
$$a_1 = 5, r = -\frac{1}{2}, n = 7$$

3.
$$a_2 = \frac{-3}{8}$$
, $a_3 = \frac{1}{4}$, $n = 5$

4.
$$a_3 = 8$$
, $a_5 = 2$, $n = 6$

Express each series in sigma notation and find the sum.

5.
$$54 + 18 \div 6 \div 2 + \frac{2}{3} + \frac{2}{9}$$

6.
$$16 - 24 + 36 - 54 + 81 - 121.5 + 182.25$$

Find a, for each geometric series described.

7.
$$S_n = -55, r = -\frac{2}{3}, n = 5$$

8.
$$S_n = 2457$$
, $a_n = 3072$, $r = -4$

Solve.

- 9. A pile driver drives a post 9 feet into the ground on its first hit. Each additional hit drives the post $\frac{2}{3}$ the distance of the prior hit. Find the total distance the post has been driven after 4 hits.
- 10. In problem 9, what is the greatest distance the pole could be driven into the ground?
- 11. Hugh Moore makes up a joke and tells it to his 5 closest friends on Sunday morning. Each of those friends tells his or her 5 closest friends on Monday morning, and so on. Assuming no duplication, how many people will have heard the joke by the end of Saturday?