

AB.Q403.REVIEW ASSESSMENT (PART F)

Derivative Tests and Miscellaneous Concepts

NO CALCULATORS

NAME:

DATE:

BLOCK:

I (print name) certify that I wrote all marks made in this assessment. I did not write anything that I do not fully understand. I would now, having completed this assessment, be able to make similar (but equally accurate) responses if asked complete the same exact assessment on my own.

Signature:

X	0	0 < x < 1	1	1 < x < 2	2	2 < x < 3	3	3 < x < 4
f(x)	-1	Negative	0	Positive	2	Positive	0	Negative
f'(x)	4	Positive	0	Positive	DNE	Negative	-3	Negative
f''(x)	-2	Negative	0	Positive	DNE	Negative	0	Positive

Let f be a function that is continuous on the interval [0, 4). The function f is twice differentiable except at x = 2. The function f and its derivatives have the properties indicated in the table above, where DNE indicates that their derivatives of f do not exist and x = 2.

f(2) exists

A. For 0 < x < 4, find all values of x at which f has a local extremum. Determine whether f has a relative maximum or a relative minimum at each of these values. Justify your answer.

$$x = 2 \rightarrow local max at x = z b/c f(x) goes from positive to regative at x = z.$$

Q'So State: $f'(x)$ DNE at $x = 2$

B. On the axes provided, sketch the graph of a function that has all the characteristics of f.

1 Continued ...

λ	O	0 < x < 1	1	$1 \le x \le 2$	2	2 < x < 3	3	3 < x < 4
((1)	-1	Negative	()	Positive	2	Positive	0	Negative
f'(x)	4	Positive	0	Positive	DNE	Negative	3	Negative
F (x)	2	Negative	0	Positive	DNE	Negative	0	Positive

Let f be a function that is continuous on the interval [0, 4). The function f is twice differentiable except at x = 2. The function f and its derivatives have the properties indicated in the table above, where DNE indicates that their derivatives of f do not exist and x = 2.

C. Let g be the function defined by $g(x) = \int_{1}^{x} f(t)dt$ on the open interval (0,4). For 0 < x < 4,

find all values at which g has a relative extremum. Determine whether g has a relative maximum or relative minimum at each of these values. Justify your answer. $g'(x) = f(x) \left[FTC \right]$

D. For the function g defined in part C, find all values of x, for 0 < x < 4, at which the graph of g has a point of inflection. Justify your answer.

$$g''(x) = f'(x)$$

$$g''(x) = f'(x) = 0 \text{ at } x = 1$$

$$g''(x) = f'(x) \Rightarrow DNE \text{ at } x = 2$$

$$g \text{ has a point of inflection at } \chi = 2$$

$$b/c g''(x) = f'(x) \text{ changes sign at } \chi = 2$$

x	f(x)	f'(x)	g(x)	g'(x)
1	6	4	2	5
2	9	2	3	1
3	10	-4	4	2
4	-1	3	6	7

- 2. The functions f and g are differentiable for all real numbers, and g is strictly increasing. The table above gives values of the functions and their first derivatives at select values of x. The function h is given by h(x) = f(g(x)) 6.
- A. Explain why there must be a value r for 1 < r < 3 such that h(r) = -5.
- B. Explain why there must be a value of c for 1 < c < 3 such that h'(c) = -5.
- C. Let w be the function given by $w(x) = \int_{1}^{g(x)} f(t)dt$. Find the value of w'(3).
- D. If g^{-1} is the inverse function of g, write an equation for the line tangent to the graph of $y = g^{-1}(x)$ at x = 2.

r=1:
$$h(1) = f(g(1)) - 6 = f(2) - 6 = 9 - 6 = 3$$

 $h(3) = f(g(3)) - 6 = f(4) - 6 = -1 - 6 = -7$
Since h is continuous and goes from $3 + 6 - 7$
It must pass through -5 for some value of Γ .
(Intermediate Value Than)

B

Ave rate
$$\Delta$$
 in $h = \frac{h(3) - h(1)}{3 - 1} = \frac{-7 - 3}{2} = \frac{-10}{2} = -5$
Since h is cont. and differentiable, there must exist a value C on $C_{1,3}$) such that $h'(c) = -5$
(Mean Value Thm)

$$w'(x) = f(g(x)) \cdot g'(x) \quad D \int_{dx} [g'(z)] = \frac{1}{g'(1)} = \frac{1}{5}$$

$$w'(3) = f(g(3)) \cdot g'(3) \qquad \qquad (g(1) = 2)$$

$$= f(4) \cdot (2) \qquad \qquad g'(2) = 1 \qquad y - 1 = \frac{1}{5}(x - 2)$$

$$= -1 \cdot 2$$

3. Let f be the function given by
$$f(x) = \frac{\ln x}{x}$$
 for all $x > 0$. The derivative of f is given by $f'(x) = \frac{1 - \ln x}{x^2}$.

A. Write an equation for the line tangent to the graph of f at $x = e^2$

B. Find the x-coordinate of the critical point of f. Determine whether this point is a relative minimum, relative maximum, or neither for the function f. Justify your answer.

C. The graph of the function f has exactly one point of inflection. Find the x-coordinate of this

C. The graph of the function f has exactly one point of inflection. Find the x-coordinate of this point.

All
$$f'(e^2) = \frac{1 - \ln(e^2)}{e^4} = \frac{-1}{e^4} = -e^4$$

$$f'(e^2) = \frac{\ln(e^2)}{e^2} = \frac{1}{e^2}$$

$$f'(x) = \frac{1 - \ln x}{x^2} = 0 \implies 1 - \ln x = 0 \implies x = e$$

All $f'(x) = \frac{1 - \ln x}{x^2} = 0 \implies 1 - \ln x = 0 \implies x = e$

$$f(x) = \frac{1 - \ln x}{x^2} = 0 \implies 1 - \ln x = 0 \implies x = e$$

$$f(x) = \frac{1 - \ln x}{x^2} =$$

$$f(x)$$
 $f(x)$ goes from positive to negative at $x=e$.

 $f''(x) = \frac{\chi^2(\frac{1}{x}) - (1 - \ln x)(2x)}{(x^2)^2} =$ $\frac{-\chi - 2\chi + 2\chi \ln \chi}{\chi^4}$

$$= -\frac{3x + 2x \ln x}{\sqrt{7}} = 0$$

$$\ln x = \frac{3}{2} \quad x = e^{-3/2}$$

3x=2x/nx x = 0

We do not, check if

f'(x) changes sign b/c

the question assured

US frere was one point

of i-file

1000 of infliction. This is the only